Add like
Add dislike
Add to saved papers

Habitat modification by invasive crayfish can facilitate its growth through enhanced food accessibility.

BMC Ecology 2017 December 13
BACKGROUND: Invasive ecosystem engineers can facilitate their invasions by modifying the physical environment to improve their own performance, but this positive feedback process has rarely been tested empirically except in sessile organisms. The invasive crayfish Procambarus clarkii is an ecosystem engineer that destroys aquatic macrophytes, which provide a physical refuge for animal prey, and this destruction is likely to enhance vulnerability to predators. Using two series of mesocosm experiments, we tested the hypothesis that the invasive crayfish increases its feeding efficiency on animal prey by reducing submerged macrophytes, thus increasing its individual growth rate in a positive density-dependent manner.

RESULTS: In the first experiment, increasing crayfish density reduced both macrophytes and animal prey (dragonfly and chironomid larvae) and, importantly, increased the growth rate of individual crayfish, in accordance with our expectation. In the second experiment, we used artificial macrophytes to clarify whether the physical architecture of macrophytes itself protects animal prey and limits crayfish growth rate. Increasing the artificial macrophyte quantity not only increased the survival of animal prey, but also retarded the crayfish growth rate.

CONCLUSIONS: We conclude that macrophytes strengthen bottom-up control of crayfish, but this effect can be relaxed by increasing the density of crayfish via reduction in macrophytes. This positive feedback process may explain the crayfish outbreaks and regime shifts occasionally observed in invaded freshwater ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app