Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis.

Lipid droplets (LD) are dynamic organelles involved in intracellular lipid metabolism in almost all eukaryotic cells, and LD-associated proteins tightly regulate their dynamics. One LD coat protein is caveolin-1 (Cav-1), an essential component for caveola assembly in highly differentiated cells, including adipocytes, smooth muscle cells, and endothelial cells (EC). However, the role of Cav-1 in LD dynamics is unclear. Here we report that EC lacking Cav-1 exhibit impaired LD formation. The decreased LD formation is due to enhanced lipolysis and not caused by reduced triglyceride synthesis or fatty acid uptake. Mechanistically, the absence of Cav-1 increased cAMP/PKA signaling in EC, as indicated by elevated phosphorylation of hormone-sensitive lipase and increased lipolysis. Unexpectedly, we also observed enhanced autocrine production of prostaglandin I2 (PGI2 , also called prostacyclin) in Cav-1 KO EC, and this PGI2 increase appeared to stimulate cAMP/PKA pathways, contributing to the enhanced lipolysis in Cav-1 KO cells. Our results reveal an unanticipated role of Cav-1 in regulating lipolysis in non-adipose tissue, indicating that Cav-1 is required for LD metabolism in EC and that it regulates cAMP-dependent lipolysis in part via the autocrine production of PGI2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app