Add like
Add dislike
Add to saved papers

Local subcutaneous injection of chlorogenic acid inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats.

Neuroscience Research 2018 September
Acute administration of chlorogenic acid (CGA) in vitro was recently shown to modulate potassium channel conductance and acid-sensing ion channels (ASICs) in the primary sensory neurons; however, in vivo peripheral effects of CGA on the nociceptive mechanical stimulation of trigeminal neuronal activity remains to be determined. The present study investigated whether local administration of CGA in vivo attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis neuronal (SpVc) activity in rats. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuronal activity elicited by non-noxious and noxious orofacial mechanical stimulation in pentobarbital anesthetized rats. The mean number of SpVc WDR neuronal firings responding to both non-noxious and noxious mechanical stimuli were significantly and dose-dependently inhibited by local subcutaneous administration of CGA (0.1-10mM), with the maximal inhibition of discharge frequency revealed within 10min and reversed after approximately 30min. The mean frequency of SpVc neuronal discharge inhibition by CGA was comparable to that by a local anesthetic, the sodium channel blocker, 1% lidocaine. These results suggest that local CGA injection into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via the activation of voltage-gated potassium channels and modulation of ASICs in the nociceptive nerve terminal of trigeminal ganglion neurons. Therefore, local injection of CGA could contribute to local anesthetic agents for the treatment of trigeminal nociceptive pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app