Read by QxMD icon Read

Neuroscience Research

Mario Altamura, Salvatore Iuso, Angela Balzotti, Girolamo Francavilla, Andrea Dimitri, Giuseppe Cibelli, Antonello Bellomo, Annamaria Petito
Reported findings on reactivity to stress of the sympathetic-adreno-medullar (SAM) and hypothalamic-pituitary-adrenal (HPA) systems in panic disorder (PD) are very variable. This inconsistency may be explained by differences in treatment exposure, illness duration and emotion regulation strategies. The present study examined the reactivity to mental stress of the SAM and HPA axes in a sample of first episode, drug naïve patients with PD which avoids confounds of medications exposure and illness chronicity...
March 14, 2018: Neuroscience Research
M Ohkuma, M Kaneda, S Yoshida, A Fukuda, E Miyachi
Signaling by glutamatergic synapses plays an important role in visual processing in the retina. In this study, we used an enzyme-linked fluorescence assay system to monitor the dynamics of extracellular glutamate in a slice preparation from the mouse retina. High K stimulation induced an elevation of fluorescence in the inner plexiform layer (IPL) of the retina when glutamate transporters were inhibited by dl-threo-β-benzyloxyaspartic acid (TBOA). The high K-induced fluorescence signals in the IPL were inhibited by the calcium channel blocker Cd2+ ...
March 6, 2018: Neuroscience Research
Nabanita Ghosh, Soham Mitra, Priyobrata Sinha, Nilkanta Chakrabarti, Arindam Bhattacharyya
1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) -induced neuroinflammation and its impact in hippocampus remain elusive till date. Our present study includes the time dependent changes of inflammatory molecules in mouse hippocampus during MPTP treatment. MPTP treatment increased level of TNF-α, enhanced expression of TNFR2 along with PI3 kinase (PI3K) induced phosphorylation of Akt resulting in persistent nuclear factor-κB (NF-κB) activation. The expressions gradually increased from Day1 post-MPTP treatment, maximally at Day3 post-treatment...
February 23, 2018: Neuroscience Research
Kazuki Mitome, Shiori Takehana, Katsuo Oshima, Yoshihito Shimazu, Mamoru Takeda
Although docosahexaenoic acid (DHA) administration suppresses sodium channels in primary afferent sensory neurons, the acute local effect of DHA on the trigeminal nociceptive reflex remains to be elucidated, in vivo. Therefore, the aim of the present study was to investigate whether local administration of DHA attenuates the nociceptive jaw-opening reflex (JOR) in vivo in the rat. The JOR evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats...
February 23, 2018: Neuroscience Research
Takamitsu Sano, Ayako Kohyama-Koganeya, Masami O Kinoshita, Tetsuya Tatsukawa, Chika Shimizu, Eriko Oshima, Kazuyuki Yamada, Tung Dinh Le, Takumi Akagi, Koujiro Tohyama, Soichi Nagao, Yoshio Hirabayashi
GPRC5B is a membrane glycoprotein robustly expressed in mouse cerebellar Purkinje cells (PCs). Its function is unknown. In Gprc5b-/- mice that lack GPRC5B, PCs develop distal axonal swellings in deep cerebellar nuclei (DCN). Numerous misshapen mitochondria, which generated excessive amounts of reactive oxygen species (ROS), accumulated in these distal axonal swellings. In primary cell cultures of Gprc5b-/- PCs, pharmacological reduction of ROS prevented the appearance of such swellings. To examine the physiological role of GPRC5B in PCs, we analyzed cerebellar synaptic transmission and cerebellum-dependent motor learning in Gprc5b-/- mice...
February 23, 2018: Neuroscience Research
Yu Shikano, Yuji Ikegaya, Takuya Sasaki
Behavioral and cognitive studies have demonstrated that brain functions are affected by the activity states of the peripheral organs, such as the cardiac and respiratory systems. However, detailed neurophysiological mechanisms underlying the body-brain interactions remain unknown. In this study, we developed a method for manipulating activity levels of the heart using direct cardiac stimulation and vagus nerve stimulation that can be combined with recording cerebral local field potentials using a microdrive system, electrocardiograms, electromyograms, in a freely moving rat...
February 15, 2018: Neuroscience Research
Tomoaki Nakazono, Heechul Jun, Mathew Blurton-Jones, Kim N Green, Kei M Igarashi
Gamma oscillations that occur within the entorhinal cortex-hippocampal circuitry play important roles in the formation and retrieval of memory in healthy brains. Recent studies report that gamma oscillations are impaired in the entorhinal-hippocampal circuit of Alzheimer's disease (AD) patients and AD animal models. Here we review the latest advancements in studies of entorhinal-hippocampal gamma oscillations in healthy memory and dementia. This review is especially salient for readers in Alzheimer's research field not familiar with in vivo electrophysiology...
February 10, 2018: Neuroscience Research
Jin-Young Park, Tae-Cheon Kang
Up to this day, the roles of PEA15 expression and its phosphorylation in seizure-related events have not been still unclear. In the present study, we found that PEA15 was distinctly phosphorylated in reactive astrocytes and apoptotic astrocytes in the rat hippocampus following LiCl-pilocarpine-induced status epilepticus (SE, a prolonged seizure activity). PEA15-serine (S) 104 phosphorylation was up-regulated in reactive astrocytes following SE, although PEA15 expression and its S116 phosphorylation were unaltered...
February 10, 2018: Neuroscience Research
Hiroyuki Arakawa, Yoshio Iguchi
Behavioral studies using animal models have widely contributed to advancing our understanding of the neuroregulatory mechanisms of human cognitive states and disorders. A variety of behavioral tests and theoretical models have been developed that provide a standardized toolbox of behavioral test paradigms available to researchers, and thus allow rapid progress in studies of the molecular-genetic bases of behavior relevant to neurocognitive diseases. However, a growing effort to utilize standardized paradigms has overlooked the diverse behavioral characteristics of test rodents expressed in standardized test situations...
February 9, 2018: Neuroscience Research
Mitsuharu Midorikawa
Synaptic vesicles are one of the smallest organelle in the cell with their sizes far below the diffraction limit of the light microscopy. Exocytosis at the synapse is tightly regulated reaction which typically occurs within millisecond after the arrival of an action potential. It has been assumed that synaptic vesicles have to be ready for immediate exocytosis upon the arrival of final trigger before exocytosis. But direct observation of the pre-exocytotic synaptic vesicle dynamics have been lacking. Total internal reflection (TIRF) microscopy is a fluorescence microscopy which has best z-axis resolution (∼100 nm) as a light microscopy, and is close to that of the ultrathin section used for electron microscopy...
February 1, 2018: Neuroscience Research
Yukiko U Inoue, Yuki Morimoto, Mikio Hoshino, Takayoshi Inoue
Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs...
January 30, 2018: Neuroscience Research
Zhi Cheng, Zhanqiang Du, Baohui Zhai, Zhuo Yang, Tao Zhang
Recently, we reported that presenilin 1 considerably increased the expression level of U1 small nuclear RNA (snRNA) accompanied with the adverse change of amyloid precursor protein (APP) expression, β-amyloid (Aβ) production and cell apoptosis. In the present study, it was found that U1 snRNA overexpression significantly elevated the expression level of autophagy. Moreover, rapamycin further enhanced the Aβ production and cell apoptosis, whereas these processes were effectively inhibited by 3-MA. Acridine orange staining images showed that U1 snRNA overexpression not only activated autophagy pathway, but also led to the autophagic-lysosomal system dysfunction in cells...
January 29, 2018: Neuroscience Research
Morteza Heidarinejad, Hideki Nakamura, Takafumi Inoue
Calcium/calmodulin-dependent protein kinase II (CaMKII) and calmodulin (CaM) play essential roles in synaptic plasticity, which is an elementary process of learning and memory. In this study, fluorescence correlation spectroscopy (FCS) revealed diffusion properties of CaM, CaMKIIα and CaMKIIβ proteins in human embryonic kidney 293 (HEK293) cells and hippocampal neurons. A simultaneous multiple-point FCS recording system was developed on a random-access two-photon microscope, which facilitated efficient analysis of molecular dynamics in neuronal compartments...
January 29, 2018: Neuroscience Research
Toshio Kosaka, Katsuko Kosaka
Secretagogin (SCGN) is a recently discovered calcium binding protein of the EF hand family, cloned from β cells of pancreatic island of Langerhans and endocrine cells of the gastrointestinal gland. SCGN characterizes some particular neuron groups in various regions of the nervous system and is considered as one of the useful neuron subpopulation markers. In the present study we reported that SCGN specifically labeled a particular neuronal cluster in the brainstem of the mice and rats. The comparison of the SCGN immunostaining with the choline acetyl transferase immunostaining and acetylcholine esterase staining clearly indicated that the particular cluster of SCGN positive neurons corresponded to the microcellular tegmental nucleus (MiTg) and the ventral portion of the cuneiform nucleus (CnF), both of which are components of the isthmus...
January 20, 2018: Neuroscience Research
Parisa Farzanehfar
Parkinson's Disease (PD) motor symptoms are caused by loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) of the midbrain. Dopamine cell replacement therapy (DA CRT), either by cell transplantation or endogenous repair, has been a potential treatment to replace dead cells and improve PD motor symptoms. Adult midbrain and striatum have been studied for many years to find evidence of neurogenesis. Although the literature is controversial, recent research has revived the possibility of neurogenesis here...
January 12, 2018: Neuroscience Research
Ekaterina Y Ilyechova, Irina V Miliukhina, Iurii A Orlov, Zamira M Muruzheva, Ludmila V Puchkova, Marina N Karpenko
Parkinson's disease (PD) patients are often characterized by copper dyshomeostasis, which is responsible for ROS formation and fibrillogenesis. However, the relationships between copper metabolism and PD development are unclear. In this study in 50 patients with PD (pPD) and 50 age-matched healthy individuals, the serum total copper concentration, oxidase activity, ceruloplasmin and SOD3 protein concentrations were measured; and amount of copper atoms per ceruloplasmin molecule was calculated. These parameters were lower in pPD relatively to healthy volunteers...
January 8, 2018: Neuroscience Research
Masahiro Wakabayashi, Daisuke Koketsu, Hideki Kondo, Shigeki Sato, Kiichi Ohara, Zlata Polyakova, Satomi Chiken, Nobuhiko Hatanaka, Atsushi Nambu
The common marmoset has been proposed as a potential alternative to macaque monkey as a primate model for neuroscience and medical research. Here, we have newly developed a stereotaxic neuronal recording system for awake marmosets under the head-fixed condition by modifying that for macaque monkeys. Using this system, we recorded neuronal activity in the cerebral cortex of awake marmosets and successfully identified the primary motor cortex by intracortical microstimulation. Neuronal activities of deep brain structures, such as the basal ganglia, thalamus, and cerebellum, in awake marmosets were also successfully recorded referring to magnetic resonance images...
January 6, 2018: Neuroscience Research
Sumiko Mochida
At the presynaptic terminal, neuronal firing activity induces membrane depolarization and subsequent Ca2+ entry through voltage-gated Ca2+ (CaV) channels triggers neurotransmitter release from the active zone. Presynaptic Ca2+ channels form a large signaling complex, which targets synaptic vesicles to Ca2+ channels for efficient release and mediates Ca2+ channel regulation. The presynaptic CaV2 channel family (comprising CaV2.1, CaV2.2 and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are the target of regulatory proteins for channel modulation...
January 6, 2018: Neuroscience Research
Rami Bou Khalil, Viviane Smayra, Youakim Saliba, Joelle Hajal, Jules-Joël Bakhos, Lama Souaiby, Sami Richa, Jean Tamraz, Nassim Farès
This study evaluates the efficacy of mifepristone on weight restoration in rats subjected to dietary restriction and methylphenidate administration. 25 female rats aged between 9 and 12 months were divided into 2 groups: 5 controls (exposed only to dietary restriction) and 20 rats that were administered 5 mg/kg/d of methylphenidate before meal exposure, for 36 days. Among rats who responded to methylphenidate (weight loss of 15-25%) weeks after its administration, a group of 6 rats continued to receive only methylphenidate ("Met" group), and another group received 10 mg/kg/d of mifepristone in addition to methylphenidate for 18 days ("Met+Mif" group; n = 6)...
December 27, 2017: Neuroscience Research
Changlai Zhu, Jing Huang, Chengbin Xue, Yaxian Wang, Shengran Wang, Shuangxi Bao, Ruyue Chen, Yuan Li, Yun Gu
Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition...
December 27, 2017: Neuroscience Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"