Read by QxMD icon Read

Neuroscience Research

Hannah Wolfe, Virginia Mela Rivas, Aedin M Minogue, Anne-Marie Miller, Chris McGuigan, Laura Williams, Deirdre Lohan, Brian A Lawlor, Marina A Lynch
The search for a blood-based biomarker that identifies Alzheimer's disease (AD) and can replace current invasive and expensive diagnostic tests, continues. The most extensively-examined peripheral marker is β-amyloid (Aβ) but the results are inconsistent across studies and do not reflect the changes that take place in the brain. Several studies have assessed possible proteomic signatures but with inconsistent findings, although increases in circulating inflammatory molecules are generally observed. Here, rather than focus on identifying changes in the circulation, we evaluated the effect of plasma from patients with mild cognitive impairment (MCI) and AD on the human monocyte-like cell line, THP-1 cells, and plasma from an AD mouse model on a mouse monocyte-macrophage cell line, J774...
January 11, 2019: Neuroscience Research
Zoha Deldar, Nabi Rustamov, Isabelle Blanchette, Mathieu Piché
The aim of the present study was to examine whether transcranial Direct Current Stimulation (tDCS) could enhance working memory and pain inhibition in older persons. Fifteen volunteers (7 women, 8 men; mean ± SD: 64 ± 4.4 y.o.) participated in two tDCS sessions during which an n-back task was performed with two levels of working memory load, while painful stimulation was delivered at the ankle. The experiment included five within-subject counterbalanced conditions (pain alone and 0-back or 2-back with or without pain) performed twice during each session...
January 4, 2019: Neuroscience Research
Nobuaki Mizuguchi, Marina Suezawa, Kazuyuki Kanosue
Motor imagery is the mental execution of an action without any actual movement. Although numerous studies have utilized questionnaires to evaluate the vividness of motor imagery, it remains unclear whether it is related to the accuracy of motor imagery. To examine the relationship between vividness and accuracy, we investigated brain activity during kinesthetic and visual motor imagery, by using a novel sequential finger-tapping task. We estimated accuracy by measuring the fidelity of the actual performance and evaluated vividness by using a visual analog scale...
December 31, 2018: Neuroscience Research
Asako Noguchi, Tetsuya Sakaguchi, Mototsugu Sato, Hide Aikawa, Nobuyoshi Matsumoto, Yuji Ikegaya
The behavioral state of animals is essential information for functional recordings of neuronal activity; practically, the exact timing when animals recover from anesthesia is important information. Recordings of cortical local field potentials and dorsal neck electromyograms (EMGs), a widely used method to identify behavioral states, requires at least two recording electrodes, one of which also requires a craniotomy procedure. In the present study, recordings of whisker EMGs alone are sufficient to detect the state switch from anesthesia to awakening in head-fixed mice...
December 26, 2018: Neuroscience Research
Yoshio Goshima, Shuya Watanabe, Erika Seki, Motokazu Koga, Daiki Masukawa, Fumio Nakamura, Takashi Komori, Nobutaka Arai
l-3,4-Dihydroxyphenylalanine (l-DOPA) has been believed to be an inert amino acid precursor of dopamine, and is the most effective therapeutic agent in Parkinson's disease (PD). We proposed l-DOPA as a neurotransmitter in the central nervous system. Recently, the ocular albinism 1 gene product, OA1/GPR143 (GPR143), was identified as a receptor for l-DOPA. In this study, we examined by generating anti-human GPR143 antibody, the localization of GPR143-immunoreactive signals in the brains from control and PD subjects...
December 24, 2018: Neuroscience Research
Yuichiro Nomura, Shohei Ikuta, Satoshi Yokota, Junpei Mita, Mami Oikawa, Hiroki Matsushima, Akira Amano, Kazuhiro Shimonomura, Yasuhiro Seya, Chieko Koike
The critical flicker-fusion frequency (CFF), defined as the frequency at which a flickering light is indistinguishable from a continuous light, is a useful measure of visual temporal resolution. The mouse CFF has been studied by electrophysiological approaches such as recordings of the electroretinogram (ERG) and the visually evoked potential (VEP), but it has not been measured behaviorally. Here we estimated the mouse CFF by using a touchscreen based operant system. The test with ascending series of frequencies and that with randomized frequencies resulted in about 17 and 14 Hz, respectively, as the frequency which could not be distinguished from steady lights...
December 5, 2018: Neuroscience Research
Xiaojing Wang, Jin Gu, Junhai Xu, Xianglin Li, Junzu Geng, Bin Wang, Baolin Liu
Scene recognition plays an important role in spatial navigation and scene classification. It remains unknown whether the occipitotemporal cortex could represent the semantic association between the scenes and sounds of objects within the scenes. In this study, we used the functional magnetic resonance imaging (fMRI) technique and multivariate pattern analysis to assess whether different scenes could be discriminated based on the patterns evoked by sounds of objects within the scenes. We found that patterns evoked by scenes could be predicted with patterns evoked by sounds of objects within the scenes in the posterior fusiform area (pF), lateral occipital area (LO) and superior temporal sulcus (STS)...
December 1, 2018: Neuroscience Research
Sunil Dhungel, Dilip Rai, Misao Terada, Chitose Orikasa, Katsuhiko Nishimori, Yasuo Sakuma, Yasuhiko Kondo
Oxytocin (OT) has been demonstrated to be involved in various social behaviors in mammals. However, OT gene knockout (OTKO) mice can conceive and deliver successfully, though females cannot rear their pups because of lack of lactation. Here, we investigated the sociosexual behavior of both sexes in two experimental setups: olfactory preference for sexual partner's odor and direct social interaction in an enriched condition. In the preference test, mice were given a choice of two airborne odors derived from intact male and receptive female mice, or from intact or castrated male mice...
November 28, 2018: Neuroscience Research
Naoya Takahashi
Brain circuits are fundamentally constituted of individual neurons that are interconnected with a vast array of synapses. In order to understand how brain function emerges from this complex synaptic network, immense efforts have been made to trace the synaptic topography, i.e. arrangement of synaptic connections, of the network. In addition to anatomically elaborating the synaptic layout at multiple levels across brain regions, recent studies have attempted to elucidate the fundamental wiring principles that underlie the neuronal activity manifested in the brain, establishing a link between anatomy and function...
November 20, 2018: Neuroscience Research
Dmitry Lyamzin, Andrea Benucci
In recent years, the number of studies on decision-making in mice has increased dramatically. Many of these studies focus on the posterior parietal cortex (PPC), an area that has been implicated in sensory and multisensory processing, navigation, motion planning, and decision-making. In this review we summarize recent anatomical and functional studies of mouse PPC. First, we make a note of the existing variability in the nomenclature and its anatomical localization. Based on the commonalities across different studies we then describe the connectivity of PPC and discuss its place within several functional brain networks...
November 19, 2018: Neuroscience Research
Libin Liao, Xueqin Wang, Xueping Yao, Bin Zhang, Lihong Zhou, Jufang Huang
Accumulating evidence from preclinical and clinical studies indicates prenatal exposure to stress or excess glucocorticoids can affect offspring brain. HDAC2 is an important target of glucocorticoid. Here we detected HDAC2 expression in male offspring hippocampus from gestational restraint stressed rat during development and the relationship between HDAC2 expression and behaviors and neurogenesis in male offspring. Pregnant rats received restrained stress during the last week of pregnancy. Expressions of HDAC2 in offspring hippocampus were detected on postnatal 0 day (P0) and 60 days (P60)...
November 16, 2018: Neuroscience Research
Matthew J Geden, Selena E Romero, Mohanish Deshmukh
Neurons are capable of degenerating their axons for the physiological clearance and refinement of unnecessary connections via the programmed degenerative pathways of apoptosis and axon pruning. While both pathways mediate axon degeneration they are however distinct. Whereas in apoptosis the entire neuron, both axons and cell body, degenerates, in the context of axon pruning only the targeted axon segments are selectively degenerated. Interestingly, the molecular pathways mediating axon degeneration in these two contexts have significant mechanistic overlap but also retain distinct differences...
November 16, 2018: Neuroscience Research
Takashi Hosaka, Takenari Yamashita, Sayaka Teramoto, Naoki Hirose, Akira Tamaoka, Shin Kwak
Currently, no reliable biomarkers of amyotrophic lateral sclerosis (ALS) exist. In sporadic ALS, RNA editing at the glutamine/arginine site of GluA2 mRNA is specifically reduced in the motor neurons due to the downregulation of adenosine deaminase acting on RNA 2 (ADAR2). Furthermore, TDP-43 pathology, the pathological hallmark of ALS, is observed in the ADAR2-lacking motor neurons in ALS patients and conditional ADAR2 knockout mice, suggesting a pivotal role of ADAR2 downregulation in the ALS pathogenesis...
November 15, 2018: Neuroscience Research
Ayako Kato, Yasuaki Tatsumi, Hideji Yako, Kazunori Sango, Tatsuhito Himeno, Masaki Kondo, Yoshiro Kato, Hideki Kamiya, Jiro Nakamura, Koichi Kato
Hypoglycemia and fluctuating high or low glucose conditions are under-appreciated sources of oxidative stress contributing to diabetic neuropathy. We investigated the effects of recurrent short-term hypoglycemia and hyperglycemia, on apoptosis and oxidative stress in Schwann cells. Immortalized adult mouse Schwann (IMS32) cells were exposed to five different glucose treatments over 3 days: 1) normal glucose (NG), 2) constant low glucose (LG), 3) constant high glucose (HG), 4) intermittent low glucose (ILG; 1 h three times per day), 5) intermittent high glucose (IHG; 1 h three times per day)...
November 13, 2018: Neuroscience Research
Yuta Senzai
Anatomical observations, theoretical work and lesioning experiments have supported the idea that the CA3 in the hippocampus is important for encoding, storage and retrieval of memory while the dentate gyrus (DG) is important for the pattern separation of the incoming inputs from the entorhinal cortex. Study of the presumed function of the dentate gyrus in pattern separation has been hampered by the lack of reliable methods to identify different excitatory cell types in the DG. Recent papers have identified different cell types in the DG, in awake behaving animals, with more reliable methods...
November 5, 2018: Neuroscience Research
Yoko Yazaki-Sugiyama
Neuronal circuits are intensively shaped depending on experiences received during developmental critical periods. How neuronal circuits are sculpted can even affect the later development of higher cognitive functions, such as vocal communication skills. Here, we propose songbirds that learn to sing from early auditory experiences as a model for understanding the neuronal mechanisms underlying the development of multistep vocal learning. By applying the principal concepts of neuronal mechanisms for regulating the timing of critical periods, which have been well investigated by using experience-dependent mammalian cortical plasticity, we review our current understanding of the underlying neuronal mechanism of the song-learning critical period...
November 3, 2018: Neuroscience Research
Hongsun Park, Haruko Miyazaki, Tomoyuki Yamanaka, Nobuyuki Nukina
Huntington Disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the exon1 of HTT. The mutant HTT affects the transcriptional profile of neurons by disrupting the activities of transcriptional machinery and alters expression of many genes. In this study, we identified dysregulated non-coding RNAs (ncRNAs) in medium spiny neurons of 4-week-old HD model mouse. Also, we observed the intracellular localizations of Abhd11os and Neat1 ncRNAs by ViewRNA ISH, which could provide more precise detection, suggesting that it is a useful method to investigate the expression changes of genes with low expression levels...
November 1, 2018: Neuroscience Research
M Pardo, Y Cheng, Y H Sitbon, J A Lowell, S F Grieco, R J Worthen, S Desse, A Barreda-Diaz
Insulin-like growth factor 2 (IGF2) is abundantly expressed in the central nervous system (CNS). Recent evidence highlights the role of IGF2 in the brain, sustained by data showing its alterations as a common feature across a variety of psychiatric and neurological disorders. Previous studies emphasize the potential role of IGF2 in psychiatric and neurological conditions as well as in memory impairments, targeting IGF2 as a pro-cognitive agent. New research on animal models supports that upcoming investigations should explore IGF2's strong promising role as a memory enhancer...
October 31, 2018: Neuroscience Research
Hiromasa Takemura, Franco Pestilli, Kevin S Weiner
Comparative neuroanatomy studies improve understanding of brain structure and function and provide insight regarding brain development, evolution, and also what features of the brain are uniquely human. With modern methods such as diffusion MRI (dMRI) and quantitative MRI (qMRI), we are able to measure structural features of the brain with the same methods across human and non-human primates. In this review article, we discuss how recent dMRI measurements of vertical occipital connections in humans and macaques can be compared with previous findings from invasive anatomical studies that examined connectivity, including relatively forgotten classic strychnine neuronography studies...
October 30, 2018: Neuroscience Research
Yuki Tanimoto, Koutarou D Kimura
Animals process sensory information from the environment to make behavioral decisions. Although environmental information may be ambiguous or gradually changing, animals can still choose one behavioral option among several through perceptual decision-making. Perceptual decision-making has been intensively studied in primates and rodents, and neural activity that accumulates sensory information has been shown to be crucial. However, it remains unclear how the accumulating neural activity is generated, and whether such activity is a conserved decision-making strategy across the animal kingdom...
October 30, 2018: Neuroscience Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"