Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Michaelis-Menten equation for degradation of insoluble substrate.

Kinetic studies of homogeneous enzyme reactions where both the substrate and enzyme are soluble have been well described by the Michaelis-Menten (MM) equation for more than a century. However, many reactions are taking place at the interface of a solid substrate and enzyme in solution. Such heterogeneous reactions are abundant both in vivo and in industrial application of enzymes but it is not clear whether traditional enzyme kinetic theory developed for homogeneous catalysis can be applied. Since the molar concentration of surface accessible sites (attack-sites) often is unknown for a solid substrate it is difficult to assess whether the requirement of the MM equation is met. In this paper we study a simple kinetic model, where removal of attack sites expose new ones which preserve the total accessible substrate, and denote this approach the substrate conserving model. The kinetic equations are solved in closed form, both steady states and progress curves, for any admissible values of initial conditions and rate constants. The model is shown to merge with the MM equation and the reverse MM equation when these are valid. The relation between available molar concentration of attack sites and mass load of substrate is analyzed and this introduces an extra parameter to the equations. Various experimental setups to practically and reliably estimate all parameters are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app