Add like
Add dislike
Add to saved papers

Optimal bounds for attenuation of elastic waves in porous fluid-saturated media.

Explicit expressions for bounds on the effective bulk and shear moduli of mixture of an elastic solid and Newtonian fluid are derived. Since in frequency domain the shear modulus of the Newtonian fluid is complex valued, the effective mixture moduli are, in general, also complex valued and, hence, the bounds are curves in the complex plane. From the general expressions for bounds of effective moduli of viscoelastic mixtures, it is shown that effective bulk and shear moduli of such mixtures must lie between the real axis and a semicircle in the upper half-plane connecting formal lower and upper Hashin-Shtrikman bounds of the mixture of the solid and inviscid fluid of the same compressibility as the Newtonian fluid. Furthermore, it is shown that the bounds on the effective complex bulk and shear moduli of the mixture are optimal; that is, the moduli corresponding to any point on the bounding curves can be attained by the Hashin sphere assemblage penetrated by a random distribution of thin cracks. The results are applicable to a variety of solid/fluid mixtures such as fluid-saturated porous materials and particle suspensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app