Add like
Add dislike
Add to saved papers

Platinum Nanoparticle-Based Microreactors as Support for Neuroblastoma Cells.

Excitotoxicity is a common phenomenon in several neurological diseases, associated with an impaired clearance of synaptically released glutamate, which leads to an overactivation of postsynaptic glutamate receptors. This will, in turn, start an intracellular cascade of neurotoxic events, which include exacerbated production of reactive oxygen species and ammonia toxicity. We report the assembly of microreactors equipped with platinum nanoparticles as artificial enzymes and polymer terminating layers including poly(dopamine). The biological response to these microreactors is assessed in human neuroblastoma cell culture. The microreactors' function to deplete hydrogen peroxide (H2 O2 ) and ammonia is confirmed. While the proliferation of the cells depends on the number of microreactors present, no inherent toxicity is found. Furthermore, the microreactors are able to ameliorate the effects of excitotoxicity in cell culture by scavenging H2 O2 and ammonia, thus having the potential to provide a therapeutic approach for several neurological diseases in which excitotoxicity is observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app