Journal Article
Review
Add like
Add dislike
Add to saved papers

Design and Synthesis of PET-Based Copolyesters with Flame-Retardant and Antidripping Performance.

Poly(ethylene terephthalate) (PET) is a fiber-forming polymer with the largest output and widest usage. Its flame retardation is well-achieved via a mechanism of promoting the melt dripping while ignited. However, the melt dripping leads to secondary damage and an immediate empyrosis during fire. How to address the contradiction between the flame retardation and the melt-dripping behavior of PET via an inherent flame-retardant approach becomes a real challenge. This feature article highlights the design and synthesis of novel PET-based copolyesters with flame-retardant and antidripping performance. Three approaches are used to design these copolyesters: "ionic aggregation," "smart self-cross-linking," and "rearrangement at high temperatures." Some new conceptions are proposed accordingly. The synthesis, structure characterization, and properties of those copolyesters are discussed together with the ongoing challenges and limitations at this frontier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app