Add like
Add dislike
Add to saved papers

A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty.

Many animal social structures are organized hierarchically, with some individuals monopolizing resources. Dominance hierarchies have received great attention from behavioural and evolutionary ecologists. There are many methods for inferring hierarchies from social interactions. Yet, there are no clear guidelines about how many observed dominance interactions (i.e. sampling effort) are necessary for inferring reliable dominance hierarchies, nor are there any established tools for quantifying their uncertainty. We simulate interactions (winners and losers) in scenarios of varying steepness (the probability that a dominant defeats a subordinate based on their difference in rank). Using these data, we (1) quantify how the number of interactions recorded and the steepness of the hierarchy affect the performance of five methods for inferring hierarchies, (2) propose an amendment that improves the performance of a popular method, and (3) suggest two easy procedures to measure uncertainty and steepness in the inferred hierarchy. We find that the ratio of interactions to individuals required to infer reliable hierarchies is surprisingly low, but depends on the steepness of the hierarchy and the method used. We show that David's score and our novel randomized Elo-rating are the best methods when hierarchies are not extremely steep, where the original Elo-rating, the I&SI and the recently described ADAGIO perform less well. In addition, we show that two simple methods can be used to estimate uncertainty at the individual and group level, and that the randomized Elo-rating repeatability provides researchers with a standardized measure valid for comparing the steepness of different hierarchies. We provide several worked examples to guide researchers interested in studying dominance hierarchies. Methods for inferring dominance hierarchies are relatively robust. We recommend that a ratio of observed interactions to individuals of at least 10 (for steep hierarchies), and ideally 20 serves as a good benchmark. Our simple procedures for estimating uncertainty in the observed data will facilitate evaluating whether sufficient data have been collected, while plotting the shape of the hierarchy will provide new insights into the social structure of the study organism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app