Add like
Add dislike
Add to saved papers

Effect of Mono-2-ethyhexyl Phthalate on DNA Methylation in Human Prostate Cancer LNCaP Cells.

OBJECTIVE: To evaluate whether mono (2-ethylhexyl) phthalate (MEHP) affects genomic DNA methylation and the methylation status of some specific genes such as patched gene (PTCH) and smoothened gene (SMO) in LNCaP cells.

METHODS: LNCaP cells were treated with MEHP (0, 1, 5, 10, and 25 μmol/L) for 3 days. An ELISA assay was preformed to detect genomic methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) content. A pyrosequencing assay was applied to assess DNA methylation in PTCH and SMO gene promoters. The correlation between DNA methylation and gene expression was assessed.

RESULTS: The proportion of cytosines with 5-mC methylation in LNCaP cells was significantly decreased by MEHP (1, 5, 10, and 25 μmol/L) in a dose-dependent manner (P < 0.01). For genes in the Hedgehog pathway, there was no significant MEHP concentration-dependent difference in the DNA methylation of PTCH and SMO.

CONCLUSION: MEHP might affect the progression of prostate cancer through its effect on global DNA methylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app