Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting.

ACS Nano 2017 November 29
The rational design and synthesis of nonprecious, efficient, and stable electrocatalysts to replace precious noble metals are crucial to the future of hydrogen economy. Herein, a partial sulfurization/phosphorization strategy is proposed to synthesize a nonstoichiometric pyrrhotite-type cobalt monophosphosulfide material (Co0.9 S0.58 P0.42 ) with a hexagonal close-packed phase for electrocatalytic water splitting. By regulating the degree of sulfurization, the P/S atomic ratio in the cobalt monophosphosulfide can be tuned to activate the Co3+ /Co2+ couples. The synergy between the nonstoichiometric nature and the tunable P/S ratio results in the strengthened Co3+ /Co2+ couples and tunable electronic structure and thus efficiently promotes the oxygen/hydrogen evolution reaction (OER/HER) processes toward overall water splitting. Especially for OER, the Co0.9 S0.58 P0.42 material, featured with a uniform yolk-shell spherical morphology, shows a low overpotential of 266 mV at 10 mA cm-2 (η10 ) with a low Tafel slope of 48 mV dec-1 as well as high stability, which is comparable to that of the reported promising OER electrocatalysts. Coupled with the high HER activity of Co0.9 S0.58 P0.42 , the overall water splitting is demonstrated with a low η10 at 1.59 V and good stability. This study shows that phase engineering and composition control can be the elegant strategy to realize the Co3+ /Co2+ couple activation and electronic structure tuning to promote the electrocatalytic process. The proposed strategy and approaches allow the rational design and synthesis of transition metal monophosphosulfides toward advanced electrochemical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app