Add like
Add dislike
Add to saved papers

Optimization of C16 and C18 fatty alcohol production by an engineered strain of Lipomyces starkeyi.

The oleaginous yeast Lipomyces starkeyi was engineered for the production of long-chain fatty alcohols by expressing a fatty acyl-CoA reductase, mFAR1, from Mus musculus. The optimal conditions for production of fatty alcohols by this strain were investigated. Increased carbon-to-nitrogen ratios led to efficient C16 and C18 fatty alcohol production from glucose, xylose and glycerol. Batch cultivation resulted in a titer of 1.7 g/L fatty alcohol from glucose which represents a yield of 28 mg of fatty alcohols per gram of glucose. This relatively high level of production with minimal genetic modification indicates that L. starkeyi may be an excellent host for the bioconversion of carbon-rich waste streams, particularly lignocellulosic waste, to C16 and C18 fatty alcohols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app