Read by QxMD icon Read

Journal of Industrial Microbiology & Biotechnology

Amanda Dodd, Dirk Swanevelder, Nerve Zhou, Dean Brady, John E Hallsworth, Karl Rumbold
Actinomycetes are the most important microorganisms for the industrial production of secondary metabolites with antimicrobial and anticancer properties. However, they have not been implicated in biorefineries. Here, we study the ability of the ε-poly-L-lysine producing Streptomyces albulus BCRC 11814 to utilize biodiesel-derived crude glycerol. S. albulus was cultured in a mineral medium supplemented with up to 10% w/v sodium chloride or potassium chloride, and with crude glycerol as the sole carbohydrate source...
September 20, 2018: Journal of Industrial Microbiology & Biotechnology
Zhengming Zhu, Xiaomei Ji, Zhimeng Wu, Juan Zhang, Guocheng Du
Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16...
September 19, 2018: Journal of Industrial Microbiology & Biotechnology
Rongzhan Fu, Qiang Fei, Longan Shang, Christopher J Brigham, Ho Nam Chang
As a potential feedstock for biofuel production, a high-cell-density continuous culture for the lipid production by Cryptococcus albidus was investigated in this study. The influences of dilution rates in the single-stage continuous cultures were explored first. To reach a high-cell-density culture, a single-stage continuous culture coupled with a membrane cell recycling system was carried out at a constant dilution rate of 0.36/h with varied bleeding ratios. The maximum lipid productivity of 0.69 g/L/h was achieved with the highest bleeding ratio of 0...
September 14, 2018: Journal of Industrial Microbiology & Biotechnology
Robert L Bertrand, John L Sorensen
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date...
September 11, 2018: Journal of Industrial Microbiology & Biotechnology
Junqiang Wang, Rongjun Guo, Wenchao Wang, Guizhen Ma, Shidong Li
Bacillus velezensis B006 is a biocontrol agent which functions through effective colonization and surfactin production. To reveal the surfactin-producing mechanism, gas chromatography-mass spectrometry based untargeted metabolomics was performed to compare the metabolite profiles of strain B006 grown in industrial media M3 and M4. Based on the statistical and pathway topology analyses, a total of 31 metabolites with a fold change of less than - 1.0 were screened as the significantly altered metabolites, which distributed in 15 metabolic pathways...
September 10, 2018: Journal of Industrial Microbiology & Biotechnology
Shinya Kodani, Hikaru Hemmi, Yuto Miyake, Issara Kaweewan, Hiroyuki Nakagawa
A shuttle vector pHSG396Sp was constructed to perform gene expression using Sphingomonas subterranea as a host. A new lasso peptide biosynthetic gene cluster, derived from Brevundimonas diminuta, was amplified by PCR and integrated to afford a expression vector pHSG396Sp-12697L. The new lasso peptide brevunsin was successfully produced by S. subterranea, harboring the expression vector, with a high production yield (10.2 mg from 1 L culture). The chemical structure of brevunsin was established by NMR and MS/MS experiments...
September 6, 2018: Journal of Industrial Microbiology & Biotechnology
Richard H Baltz
Bacteriophage contamination and cell lysis have been recurring issues with some actinomycetes used in the pharmaceutical fermentation industry since the commercialization of streptomycin in the 1940s. In the early years, spontaneous phage-resistant mutants or lysogens were isolated to address the problem. In some cases, multiple phages were isolated from different contaminated fermentors, so strains resistant to multiple phages were isolated to stabilize the fermentation processes. With the advent of recombinant DNA technology, the early scaleup of the Escherichia coli fermentation process for the production of human insulin A and B chains encountered contamination with multiple coliphages...
September 6, 2018: Journal of Industrial Microbiology & Biotechnology
Beth Papanek, Kaela B O'Dell, Punita Manga, Richard J Giannone, Dawn M Klingeman, Robert L Hettich, Steven D Brown, Adam M Guss
Clostridium thermocellum is a potentially useful organism for the production of lignocellulosic biofuels because of its ability to directly deconstruct cellulose and convert it into ethanol. Previously engineered C. thermocellum strains have achieved higher yields and titers of ethanol. These strains often initially grow more poorly than the wild type. Adaptive laboratory evolution and medium supplementation have been used to improve growth, but the mechanism(s) by which growth improves remain(s) unclear. Here, we studied (1) wild-type C...
September 5, 2018: Journal of Industrial Microbiology & Biotechnology
Junqing Wang, Jian Peng, Han Fan, Xiang Xiu, Le Xue, Lei Wang, Jing Su, Xiaohui Yang, Ruiming Wang
Candida tropicalis can grow with alkanes or plant oils as the sole carbon source, and its industrial application thus has great potential. However, the choice of a suitable genetic operating system can effectively increase the speed of metabolic engineering. MazF functions as an mRNA interferase that preferentially cleaves single-stranded mRNAs at ACA sequences to inhibit protein synthesis, leading to cell growth arrest. Here, we constructed a suicide plasmid named pPICPJ-mazF that uses the mazF gene of Escherichia coli as a counterselectable marker for the markerless editing of C...
September 5, 2018: Journal of Industrial Microbiology & Biotechnology
Shuo-Fu Yuan, Teng-Chieh Hsu, Chun-An Wang, Ming-Feng Jang, Yang-Cheng Kuo, Hal S Alper, Gia-Luen Guo, Wen-Song Hwang
Utilization of renewable and low-cost lignocellulosic wastes has received major focus in industrial lactic acid production. The use of high solid loadings in biomass pretreatment potentially offers advantages over low solid loadings including higher lactic acid concentration with decreased production and capital costs. In this study, an isolated Enterococcus faecalis SI with optimal temperature 42 °C was used to produce optically pure L-lactic acid (> 99%) from enzyme-saccharified hydrolysates of acid-impregnated steam explosion (AISE)-treated plywood chips...
September 4, 2018: Journal of Industrial Microbiology & Biotechnology
Yi Guan, Di Yin, Xi Du, Xiuyun Ye
Increase of pectinase activity is especially important in fermentation industry. Understanding of the metabolic mechanisms can find metabolic modulation approach to promote high yield of pectinase. Higher activity of pectinase was detected in DY1 than DY2, two strains of Bacillus licheniformis. GC-MS-based metabolomics identified differential metabolome of DY2 compared with DY1, characterizing the increased TCA cycle and biosynthesis of fatty acids. Elevated activity of pyruvate dehydrogenase (PDH), α-ketoglutaric dehydrogenase (KGDH) and succinate dehydrogenase (SDH) showed global elevation of carbon metabolism, which is consistent with the result that lowers glucose in DY2 than DY1...
September 3, 2018: Journal of Industrial Microbiology & Biotechnology
Qi Han, Mark A Eiteman
The NAD+ /NADH ratio and the total NAD(H) play important roles for whole-cell biochemical redox transformations. After the carbon source is exhausted, the degradation of NAD(H) could contribute to a decline in the rate of a desired conversion. In this study, methods to slow the native rate of NAD(H) degradation were examined using whole-cell Escherichia coli with two model oxidative NAD+ -dependent biotransformations. A high phosphate concentration (50 mM) was observed to slow NAD(H) degradation. We also constructed E...
August 29, 2018: Journal of Industrial Microbiology & Biotechnology
Feng Qi, Chandresh Thakker, Fayin Zhu, Matthew Pena, Ka-Yiu San, George N Bennett
Clostridium acetobutylicum is a natural producer of butanol, butyrate, acetone and ethanol. The pattern of metabolites reflects the partitioning of redox equivalents between hydrogen and carbon metabolites. Here the exogenous genes of ferredoxin-NAD(P)+ oxidoreductase (FdNR) and trans-enoyl-coenzyme reductase (TER) are introduced to three different Clostridium acetobutylicum strains to investigate the distribution of redox equivalents and butanol productivity. The FdNR improves NAD(P)H availability by capturing reducing power from ferredoxin...
August 23, 2018: Journal of Industrial Microbiology & Biotechnology
Xin Xu, Chunfeng Liu, Chengtuo Niu, Jinjing Wang, Feiyun Zheng, Yongxian Li, Qi Li
Saccharomyces cerevisiae strains with favorable characteristics are preferred for application in industries. However, the current ability to reprogram a yeast cell on the genome scale is limited due to the complexity of yeast ploids. In this study, a method named genome replication engineering-assisted continuous evolution (GREACE) was proved efficient in engineering S. cerevisiae with different ploids. Through iterative cycles of culture coupled with selection, GREACE could continuously improve the target traits of yeast by accumulating beneficial genetic modification in genome...
August 3, 2018: Journal of Industrial Microbiology & Biotechnology
Liqiu Su, Yanbing Shen, Menglei Xia, Zhihua Shang, Shuangping Xu, Xingjuan An, Min Wang
Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are generally produced by the biotransformation of phytosterols in Mycobacterium. The AD (D) production increases when the strain has high NAD+ /NADH ratio. To enhance the AD (D) production in Mycobacterium neoaurum TCCC 11978 (MNR M3), a rational strategy was developed through overexpression of a gene involved in the phytosterol degradation pathway; NAD+ was generated as well. Proteomic analysis of MNR cultured with and without phytosterols showed that the steroid C27-monooxygenase (Cyp125-3), which performs sequential oxidations of the sterol side chain at the C27 position and has the oxidative cofactor of NAD+ generated, played an important role in the phytosterol biotransformation process of MNR M3...
August 2, 2018: Journal of Industrial Microbiology & Biotechnology
Chenxian Yang, Fangfang Yue, Yanlong Cui, Yuanmei Xu, Yuanyuan Shan, Bianfang Liu, Yuan Zhou, Xin Lü
Lignin valorization can be obtained through cleavage of selected bonds by microbial enzymes, in which lignin is segregated from cellulose and hemicellulose and abundant phenolic compounds can be provided. In this study, Pseudomonas sp. Q18, previously isolated from rotten wood in China, was used to degrade alkali lignin and raw lignocellulosic material. Gel-permeation chromatography, field-emission scanning electron microscope, and GC-MS were combined to investigate the degradation process. The GC-MS results revealed that the quantities of aromatic compounds with phenol ring from lignin increased significantly after incubation with Pseudomonas sp...
July 26, 2018: Journal of Industrial Microbiology & Biotechnology
Lan Li, Xuwen Qiao, Jin Chen, Yuanpeng Zhang, Qisheng Zheng, Jibo Hou
Vaccine immunization is now one of the most effective ways to control porcine reproductive and respiratory syndrome virus (PRRSV) infection. Impurity is one of the main factors affecting vaccine safety and efficacy. Here we present a novel innovative PRRSV purification approach based on surface display technology. First, a bifunctional protein PA-GRFT (protein anchor-griffithsin), the crucial factor in the purification process, was successfully produced in Escherichia coli yielding 80 mg/L of broth culture...
July 25, 2018: Journal of Industrial Microbiology & Biotechnology
Yu Zheng, Yangang Chang, Renkuan Zhang, Jia Song, Ying Xu, Jing Liu, Min Wang
Oxygen acts as the electron acceptor to oxidize ethanol by acetic acid bacteria during acetic acid fermentation. In this study, the energy release rate from ethanol and glucose under different aerate rate were compared, and the relationship between energy metabolism and acetic acid fermentation was analyzed. The results imply that proper oxygen supply can maintain the reasonable energy metabolism and cell tolerance to improve the acetic acid fermentation. Further, the transcriptions of genes that involve in the ethanol oxidation, TCA cycle, ATP synthesis and tolerance protein expression were analyzed to outline the effect of oxygen supply on cell metabolism of Acetobacter pasteurianus...
July 14, 2018: Journal of Industrial Microbiology & Biotechnology
David R Espeso, Esteban Martínez-García, Ana Carpio, Víctor de Lorenzo
Exploitation of biofilms for industrial processes requires them to adopt suitable physical structures for rendering them efficient and predictable. While hydrodynamics could be used to control material features of biofilms of the platform strain Pseudomonas putida KT2440 there is a dearth of experimental data on surface-associated growth behavior in such settings. Millimeter scale biofilm patterns formed by its parental strain P. putida mt-2 under different Reynolds numbers (Re) within laminar regime were analyzed using an upscale experimental continuous cultivation assembly...
October 2018: Journal of Industrial Microbiology & Biotechnology
Kelly A Markham, Hal S Alper
Traditional synthesis of biodiesel competes with food sources and has limitations with storage, particularly due to limited oxidative stability. Microbial synthesis of lipids provides a platform to produce renewable fuel with improved properties from various renewable carbon sources. Specifically, biodiesel properties can be improved through the introduction of a cyclopropane ring in place of a double bond. In this study, we demonstrate the production of C19 cyclopropanated fatty acids in the oleaginous yeast Yarrowia lipolytica through the heterologous expression of the Escherichia coli cyclopropane fatty acid synthase...
October 2018: Journal of Industrial Microbiology & Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"