Add like
Add dislike
Add to saved papers

Influence of attention and bolus volume on brain organization during swallowing.

It has been shown that swallowing involves certain attentional and cognitive resources which, when disrupted can influence swallowing function with in dysphagic patient. However, there are still open questions regarding the influence of attention and cognitive demands on brain activity during swallowing. In order to understand how brain regions responsible for attention influence brain activity during swallowing, we compared brain organization during no-distraction swallowing and swallowing with distraction. Fifteen healthy male adults participated in the data collection process. Participants performed ten 1 ml, ten 5 ml, and ten 10 ml water swallows under both no-distraction conditions and during distraction while EEG signals were recorded. After standard pre-processing of the EEG signals, brain networks were formed using the time-frequency based synchrony measure. The brain networks formed were then compared between the two sets of conditions. Results showed that there are differences in the Delta, Theta, Alpha, Beta, and Gamma frequency bands between no-distraction swallowing and swallowing with distraction. Differences in the Delta and Theta frequency bands can be attributed to changes in subliminal processes, while changes in the Alpha and Beta frequency bands are directly associated with the various levels of attention and cognitive demands during swallowing process, and changes in the Gamma frequency band are due to changes in motor activity. Furthermore, we showed that variations in bolus volume influenced the swallowing brain networks in the Delta, Theta, Alpha, Beta, and Gamma frequency bands. Changes in the Delta, Theta, and Alpha frequency bands are due to sensory perturbations evoked by the various bolus volumes. Changes in the Beta frequency band are due to reallocation of cognitive demands, while changes in the Gamma frequency band are due to changes in motor activity produced by variations in bolus volume. These findings could potentially lead to the development of better understanding of the nature of dysphagia and various rehabilitation strategies for patients with neurogenic dysphagia who have altered attention or impaired cognitive functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app