Add like
Add dislike
Add to saved papers

A New Generation of Arachidonic Acid Analogues as Potential Neurological Agent Targeting Cytosolic Phospholipase A 2 .

Scientific Reports 2017 October 21
Cytosolic phospholipase A2 (cPLA2 ) is an enzyme that releases arachidonic acid (AA) for the synthesis of eicosanoids and lysophospholipids which play critical roles in the initiation and modulation of oxidative stress and neuroinflammation. In the central nervous system, cPLA2 activation is implicated in the pathogenesis of various neurodegenerative diseases that involves neuroinflammation, thus making it an important pharmacological target. In this paper, a new class of arachidonic acid (AA) analogues was synthesized and evaluated for their ability to inhibit cPLA2 . Several compounds were found to inhibit cPLA2 more strongly than arachidonyl trifluoromethyl ketone (AACOCF3 ), an inhibitor that is commonly used in the study of cPLA2 -related neurodegenerative diseases. Subsequent experiments concluded that one of the inhibitors was found to be cPLA2 -selective, non-cytotoxic, cell and brain penetrant and capable of reducing reactive oxygen species (ROS) and nitric oxide (NO) production in stimulated microglial cells. Computational studies were employed to understand how the compound interacts with cPLA2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app