Add like
Add dislike
Add to saved papers

Divergent Synthesis of Cyclopropane-Containing Lead-Like Compounds, Fragments and Building Blocks through a Cobalt Catalyzed Cyclopropanation of Phenyl Vinyl Sulfide.

Cyclopropanes provide important design elements in medicinal chemistry and are widely present in drug compounds. Here we describe a strategy and extensive synthetic studies for the preparation of a diverse collection of cyclopropane-containing lead-like compounds, fragments and building blocks exploiting a single precursor. The bifunctional cyclopropane (E/Z)-ethyl 2-(phenylsulfanyl)-cyclopropane-1-carboxylate was designed to allow derivatization through the ester and sulfide functionalities to topologically varied compounds designed to fit in desirable chemical space for drug discovery. A cobalt-catalyzed cyclopropanation of phenyl vinyl sulfide affords these scaffolds on multigram scale. Divergent, orthogonal derivatization is achieved through hydrolysis, reduction, amidation and oxidation reactions as well as sulfoxide-magnesium exchange/functionalization. The cyclopropyl Grignard reagent formed from sulfoxide exchange is stable at 0 °C for > 2 h, which enables trapping with various electrophiles and Pd-catalyzed Negishi cross-coupling reactions. The library prepared, as well as a further virtual elaboration, is analyzed against parameters of lipophilicity (ALog P), MW and molecular shape by using the LLAMA (Lead-Likeness and Molecular Analysis) software, to illustrate the success in generating lead-like compounds and fragments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app