Add like
Add dislike
Add to saved papers

Xylem Sap Surface Tension May Be Crucial for Hydraulic Safety.

Plant Physiology 2017 November
The surface tension (γ) of xylem sap plays a key role in stabilizing air-water interfaces at the pits between water- and gas-filled conduits to avoid air seeding at low water potentials. We studied seasonal changes in xylem sap γ in Picea abies and Pinus mugo growing at the alpine timberline. We analyzed their vulnerability to drought-induced embolism using solutions of different γ and estimated the potential effect of seasonal changes in γ on hydraulic vulnerability. In both species, xylem sap γ showed distinct seasonal courses between about 50 and 68 mn m-1 Solutions with low γ caused higher vulnerability to drought-induced xylem embolism. The water potential at 50% loss of hydraulic conductivity in P. abies and P. mugo was -3.35 and -3.86 MPa at γ of 74 mn m-1 but -2.11 and -2.09 MPa at 45 mn m-1 This indicates up to about 1 MPa seasonal variation in 50% loss of hydraulic conductivity. The results revealed pronounced effects of changes in xylem sap γ on the hydraulic safety of trees in situ. These effects also are relevant in vulnerability analyses, where the use of standard solutions with high γ overestimates hydraulic safety. Thus, γ should be considered carefully in hydraulic studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app