Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-221-3p Regulates Angiopoietin-Like 8 (ANGPTL8) Expression in Adipocytes.

Context: Angiopoietin-like 8 (ANGPTL8) has been identified as a key regulator of lipid metabolism.

Design: We addressed the correlation between ANGPTL8 messenger RNA (mRNA) with hallmark insulin-regulated and lipogenic genes in human adipose tissue (AT). The regulation of ANGPTL8 expression in adipocytes was studied after inflammatory challenge, and the role of microRNA (miRNA)-221-3p therein was investigated.

Results: ANGPTL8 gene expression in subcutaneous AT (SAT) and visceral AT (VAT) was highly correlated with SLC2A4/GLUT4, ADIPOQ, fatty acyl synthase, and diacylglycerol O-acyltransferase 1. ANGPTL8 mRNA in human adipocytes was suppressed by the inflammatory impact of conditioned medium of lipopolysaccharide-stimulated macrophages, which markedly induced miR-221-3p. MiR-221-3p was shown to target the ANGPTL8 mRNA, and to reduce adipocyte ANGPTL8 protein expression. Analysis of SAT biopsies from 69 subjects ranging from lean to morbidly obese and of VAT of 19 female subjects biopsied during gynecologic surgery demonstrated a trend of negative correlation between ANGPTL8 and miR-221-3p. Significant negative correlation of ANGPTL8 and miR-221-3p was identified in presurgery SAT samples from 22 morbidly obese subjects undergoing bariatric surgery, but vanished after ∼2-year surgery-induced weight loss, which also resulted in a marked reduction of miR-221-3p. ANGPTL8 correlated negatively with the AT inflammatory gene phospholipase A2 G7, whereas miR-221-3p showed a significant positive correlation with this marker. Of note, no correlation was found between AT ANGPTL8 mRNA expression and plasma ANGPTL8.

Conclusions: The inflammation-induced miR-221-3p regulates ANGPTL8 expression in adipocytes. This miRNA impact may become especially prominent under pathologic conditions such as morbid obesity, putatively contributing to the impaired AT lipid metabolism in metabolic disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app