Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fluorescence Assay for Ribonuclease H Based on Nonlabeled Substrate and DNAzyme Assisted Cascade Amplification.

Analytical Chemistry 2017 October 18
As a highly conserved damage repair protein, RNase H can specifically hydrolyze RNA in DNA-RNA chimeric strands. DNAzyme, a synthetic single-stranded DNA consisting of binding and catalytic sites, can cleave RNA in the presence of cofactors. In this study, we establish a highly sensitive RNase H assay assisted with DNAzyme's cleavage property. A DNA-RNA chimeric strand, which contains DNAzyme sequences, is used as the hydrolysis substrate of RNase H. The RNase H hydrolysis of the chimeric substrate results in the release of DNAzyme. Subsegment DNAzyme digest, a molecular beacon, causes a "turn-on" fluorescence signal by disrupting its hairpin structure. Furthermore, the fluorescence signal is amplified by cyclic digestion of DNAzyme to the substrate of molecular beacon. Under the optimal conditions, the detection limit of RNase H is 0.01 U/mL, which is superior to those of several alternative approaches. Additionally, the method was further used for RNase H detection in heterogeneous biological samples as well as to investigate the effects of natural compounds on this enzyme. In summary, these results show that the method not only provides a universal platform for monitoring RNase H activity but also shows great potential in biomedical studies and drug screening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app