Journal Article
Review
Add like
Add dislike
Add to saved papers

Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil.

Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely produced and used in many countries until the increasing concern about their environmental risk lead to their ban in the 1980s. Although their emissions decreased, PCBs are nowadays still present in the environment and can be reemitted from reservoir compartments such as contaminated soils. In the last two decades, there has been a growing interest in bioremediation technologies that use plants and microorganisms (i.e. rhizoremediation) to degrade organic chemicals in contaminated sites. Different studies have been conducted to investigate the potential of plant-microbe interactions in the remediation of organic chemical contaminated soils. They range from short-term and laboratory/greenhouse experiments to long-term and field trials and, when correctly set up, they could provide useful data such as PCB rhizoremediation half-lives in soil. Such type of data are important input parameters for multimedia fate models that aim to estimate the time requested to achieve regulatory thresholds in a PCB contaminated site, allowing to draw up its remediation plan. This review focuses on the main factors influencing PCB fate, persistence and bioavailability in soil including PCB mixture congener composition, soil organic carbon forms, microorganism activity, plant species and soil conditions. Furthermore, it provides an estimate of rhizoremediation half-lives of the ten PCB families starting from the results of literature rhizoremediation experiments. Finally, guidance to perform appropriate experiments to obtain comparable, accurate and useful data for fate estimation is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app