Journal Article
Review
Add like
Add dislike
Add to saved papers

Small Molecule PET Tracers for Transporter Imaging.

As the field of PET has expanded and an ever-increasing number and variety of compounds have been radiolabeled as potential in vivo tracers of biochemistry, transporters have become important primary targets or facilitators of radiotracer uptake and distribution. A transporter can be the primary target through the development of a specific high-affinity radioligand: examples are the multiple high-affinity radioligands for the neuronal membrane neurotransmitter or vesicular transporters, used to image nerve terminals in the brain. The goal of a radiotracer might be to study the function of a transporter through the use of a radiolabeled substrate, such as the application of 3-O-[11 C]methyl]glucose to measure rates of glucose transport through the blood-brain barrier. In many cases, transporters are required for radiotracer distributions, but the targeted biochemistries might be unrelated: an example is the use of 2-deoxy-2-[18 F]FDG for imaging glucose metabolism, where initial passage of the radiotracer through cell membranes requires the action of specific glucose transporters. Finally, there are transporters such as p-glycoprotein that function to extrude small molecules from tissues, and can effectively work against successful uptake of radiotracers. The diversity of structures and functions of transporters, their importance in human health and disease, and their role in therapeutic drug disposition suggest that in vivo imaging of transporter location and function will continue to be a point of emphasis in PET radiopharmaceutical development. In this review, the variety of transporters and their importance for in vivo PET radiotracer development and application are discussed. Transporters have thus joined the other major protein targets such as G-protein coupled receptors, ligand-gated ion channels, enzymes, and aggregated proteins as of high interest for understanding human health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app