Add like
Add dislike
Add to saved papers

High-Speed Melting Analysis: The Effect of Melting Rate on Small Amplicon Microfluidic Genotyping.

Clinical Chemistry 2017 October
BACKGROUND: High-resolution DNA melting analysis of small amplicons is a simple and inexpensive technique for genotyping. Microfluidics allows precise and rapid control of temperature during melting.

METHODS: Using a microfluidic platform for serial PCR and melting analysis, 4 targets containing single nucleotide variants were amplified and then melted at different rates over a 250-fold range from 0.13 to 32 °C/s. Genotypes (n = 1728) were determined manually by visual inspection after background removal, normalization, and conversion to negative derivative plots. Differences between genotypes were quantified by a genotype discrimination ratio on the basis of inter- and intragenotype differences using the absolute value of the maximum vertical difference between curves as a metric.

RESULTS: Different homozygous curves were genotyped by melting temperature and heterozygous curves were identified by shape. Technical artifacts preventing analysis (0.3%), incorrect (0.06%), and indeterminate (0.4%) results were minimal, occurring mostly at slow melting rates (0.13-0.5 °C/s). Genotype discrimination was maximal at around 8 °C/s (2-8 °C/s for homozygotes and 8-16 °C/s for heterozygotes), and no genotyping errors were made at rates >0.5 °C/s. PCR was completed in 10-12.2 min, followed by melting curve acquisition in 4 min down to <1 s.

CONCLUSIONS: Microfluidics enables genotyping by melting analysis at rates up to 32 °C/s, requiring <1 s to acquire an entire melting curve. High-speed melting reduces the time for melting analysis, decreases errors, and improves genotype discrimination of small amplicons. Combined with extreme PCR, high-speed melting promises nucleic acid amplification and genotyping in < 1 min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app