Add like
Add dislike
Add to saved papers

Identification of key genes and pathways associated with obesity in children.

The present study aimed to identify potential key genes and pathways in obese children in order to explore possible molecular mechanisms associated with child obesity. The array dataset GSE29718 was downloaded from the Gene Expression Omnibus database. Subcutaneous adipose tissue samples derived from 7 obese children and 8 lean children were selected for the analysis. Differentially expressed genes (DEGs) in samples from obese children compared with those from lean children were analyzed by the limma package. Gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes and Reactome pathway enrichment analyses for up and downregulated genes were performed. A protein-protein interaction (PPI) network was constructed with Cytoscape software and important genes associated with obesity were determined using IRegulon. A total of 199 DEGs (79 up and 120 downregulated genes) were identified in the samples of obese children compared with those from lean children. The PPI network was established with 103 nodes and 147 protein pairs. Matrix metalloproteinase 9 (MMP9) and acetyl-CoA carboxylase β (ACACB) were identified as hub genes in the PPI network and may therefore be marker genes for child obesity. In addition, upregulated DEGs were enriched in Reactome pathways associated with the immune system. Besides, MMP9 was upregulated in immune system processes as a GO term in the category Biological Processes. The results of the present study indicated that MMP9, ACACB and immune system pathways may have a significant role in child obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app