Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A B-Spline Framework for Smooth Derivative Computation in Well Test Analysis Using Diagnostic Plots.

Ground Water 2018 January
In the oil and gas industry, well test analysis using derivative plots, has been the core technique in examining reservoir and well behavior over the last three decades. Recently, diagnostics plots have gained recognition in the field of hydrogeology; however, this tool is still underused by groundwater professionals. The foremost drawback is that the derivative function must be computed from noisy field measurements, usually based on finite-difference schemes, which complicates the analysis. We propose a B-spline framework for smooth derivative computation, referred to as Constrained Quartic B-Splines with Free Knots. The approach presents the following novelties in relation to methodological precedents: (1) the use of automatic equality derivative constraints, (2) a knot removal strategy and (3) the introduction of a Boolean shape parameter that defines the number of initial knots to choose. These can lead to evaluate both simple (manually recorded drawdown measurements) and complex (transducer measured records) datasets. Furthermore, we propose an additional shape preserving smoothing preprocess procedure, as a simple, fast and robust method to deal with extremely noisy signals. Our framework was tested in four pumping tests by comparing the spline derivative with regards to the Bourdet algorithm, and we found that the latter is rather noisy (even for large differentiation intervals) and the second derivative response is basically unreadable. In contrast, the spline first and second derivative led to smoother responses, which are more suitable for interpretation. We concluded that the proposed framework is a welcome contribution to evaluate reliable aquifer tests using derivative-diagnostic plots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app