Read by QxMD icon Read

Ground Water

Quanghee Yi, Mark Stewart
The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals...
June 20, 2017: Ground Water
Roger Pacheco Castro, Julia Pacheco Ávila, Ming Ye, Armando Cabrera Sansores
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster...
June 15, 2017: Ground Water
Giulia de Pasquale
No abstract text is available yet for this article.
June 13, 2017: Ground Water
Daniel B Abrams, George S Roadcap, Devin Mannix
Investigating changes in an aquifer system often involves comparison of observed heads from different synoptic measurements, generally with potentiometric surfaces developed by hand or a statistical approach. Alternatively, head-specified MODFLOW models, in which constant head cells simulate observed heads, generate gridded potentiometric surfaces that explicitly account for Darcy's Law and mass balance. We developed a transient head-specified MODFLOW model for the stratified Cambrian-Ordovician sandstone aquifer system of northeastern Illinois to analyze flow within its 275 m deep cone of depression...
June 13, 2017: Ground Water
Ferenc Székely
Modeling of the head recovery (buildup) in and intermittent operation of flowing wells lacks rigorous analytical tools. Presently different methods are applied in discharging and recovery phases. The presented reliable approximate solution considers a continuous free flow process and time variant screen loss parameters. The latter are temporarily set to large value to prevent inflow into the well bore during the single recovery or in repeated shut down periods. This method is called as screen loss control or SLC technique and is verified by means of comparative analysis with the constant rate pumping-recovery test simulated in leaky aquifer...
June 7, 2017: Ground Water
Hyeonju Lee, Min-Ho Koo, Yongcheol Kim
Large agricultural fields in South Korea are located mostly on alluvial plains, where a significant amount of groundwater is used for heating of water-curtain insulated greenhouses. Such greenhouses are commonly used for crop cultivation during the winter dry season from November to March. After use the groundwater is discharged directly into streams, causing groundwater depletion. A hydrogeological study was carried out in a typical agricultural area of this type, located on an alluvial aquifer near the Nakdong River...
June 7, 2017: Ground Water
Michael N Fienen, Kenneth R Bradbury, Maribeth Kniffin, Paul M Barlow
Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping-showing the model-calculated potential impacts that wells have on stream baseflow-can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow...
June 6, 2017: Ground Water
Neil Terry, Frederick D Day-Lewis, Judith L Robinson, Lee D Slater, Keith Halford, Andrew Binley, John W Lane, Dale Werkema
Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations...
May 23, 2017: Ground Water
Kelvin Wong, Marirosa Molina
Bacteriophages have been used in soil column studies for the last several decades as surrogates to study the fate and transport behavior of enteric viruses in groundwater. However, recent studies have shown that the transport behavior of bacteriophages and enteric viruses in porous media can be very different. The next generation of virus transport science must therefore provide more data on mobility of enteric viruses and the relationship between transport behaviors of enteric viruses and bacteriophages. To achieve this new paradigm, labor intensity devoted to enteric virus quantification method must be reduced...
May 23, 2017: Ground Water
Liangping Li, Meijing Zhang, Kurt Katzenstein
The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework...
May 23, 2017: Ground Water
Muhammad Hasan, Yanjun Shang, Gulraiz Akhter, Majid Khan
The importance of the study of fresh-saline water incursion cannot be over-emphasized. Borehole techniques have been widely used, but they are quite expensive, intrusive, and time consuming. The electrical resistivity method has proved very successful in groundwater assessment. This advanced technique uses the calculation of Dar-Zarrouk (D-Z) parameters, namely longitudinal unit conductance, transverse unit resistance, and longitudinal resistivity has been employed by using 50 vertical electrical sounding points to assess the groundwater and delineate the fresh-saline water interface over 1045 km(2) area of Khanewal in Southern Punjab of Pakistan...
May 12, 2017: Ground Water
Matthew J Knowling, Adrian D Werner
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady-state models for practical situations (i.e., real-world, field-scale aquifer settings) is limited by the need for excessive amounts of hydraulic-parameter and groundwater-level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water-level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations...
May 12, 2017: Ground Water
Nawal Alfarrah, Gebremedhin Berhane, Abdelrahim Hweesh, Kristine Walraevens
The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man-Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s...
May 12, 2017: Ground Water
Yun Yang, Jianfeng Wu, Jinguo Wang, Zhifang Zhou
This study presents a new multiobjective evolutionary algorithm (MOEA), the elitist multiobjective tabu search (EMOTS), and incorporates it with MODFLOW/MT3DMS to develop a groundwater simulation-optimization (SO) framework based on modular design for optimal design of groundwater remediation systems using pump-and-treat (PAT) technique. The most notable improvement of EMOTS over the original multiple objective tabu search (MOTS) lies in the elitist strategy, selection strategy, and neighborhood move rule. The elitist strategy is to maintain all nondominated solutions within later search process for better converging to the true Pareto front...
May 10, 2017: Ground Water
Daniel Franco, Kapo Coulibaly, Tanya Kunberger, Kristoph-Dietrich Kinzli, Sebastian Arbelaez, Thomas M Missimer
Mixed carbonate and siliciclastic marine sediments commonly become freshwater aquifers in eastern coastal regions of the United States and many other global locations. As these deposits age, the carbonate fraction of the sediment is commonly removed by dissolution and the aquifer can become a solely siliciclastic system or contain zones or beds of pure quartz sand. During aquifer evolution, the sediment grain size characteristics, hydraulic conductivity, and porosity change. An investigation of these changes using mixed carbonate/siliciclastic sediment samples collected from a modern barrier island beach in southern Florida showed that the average mean grain diameter decreased with removal of the carbonate fraction, but the average hydraulic conductivity and porosity increased slightly, but not to statistical significance...
May 10, 2017: Ground Water
Jean-Philippe Nicot
No abstract text is available yet for this article.
May 10, 2017: Ground Water
Yanmei He
China shares more than 20 transboundary aquifers with its coaquifer states, but they have not exploited their transboundary groundwater resources, and these resources have not been governed by any international agreements. Given the close interaction between surface water and groundwater, and the growing demands for transboundary groundwater in China and its coaquifer states, there is increasing necessity for these countries to undertake international cooperation on this issue. This article overviews China's transboundary aquifers, reviews the duty to cooperate on China's transboundary groundwater as well as the emerging transboundary aquifer law...
May 10, 2017: Ground Water
Rosario Sanchez, Gabriel Eckstein
Totally 36 aquifers have been identified along the Mexico-U.S. border. Of these, only 16 have adequate data to provide a reasonable level of confidence to categorize them as transboundary. Limited and/or contrasting data over the other aquifers in the region reflects the void in transboundary groundwater management and assessment mechanisms throughout much of the Mexico-U.S. border. This paper identifies management mechanisms, structures, and institutional prioritization related to transboundary aquifers shared between Mexico and the United States...
May 10, 2017: Ground Water
Vitaly A Zlotnik, Anvar Kacimov, Ali Al-Maktoumi
Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip...
May 2, 2017: Ground Water
Shawn M Paquette, Lisa J Molofsky, John A Connor, Kenneth L Walker, Harley Hopkins, Ayan Chakraborty
A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another...
April 25, 2017: Ground Water
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"