Add like
Add dislike
Add to saved papers

Efficient method for the measurement of lifetime optical damage performance of thin film coatings from laser damage size analysis.

Optics Letters 2017 August 16
A laser damage test method based on damage size analysis (DSA) is described that simplifies the derivation of the lifetime optical damage threshold of film materials critical in the design of devices used in high-repetition-rate, high-power laser systems. The DSA method presented here is solely based on imaging to measure the damage site size produced from exposure to a known Gaussian-shaped beam with a fixed, systematically selected fluence well above the ablation threshold. The method locates the damage boundary produced from repeated exposures, using images with a high contrast, and maps it to the beam profile to extract a lifetime laser damage fluence threshold value. We validate the DSA approach using a few relevant transparent film material systems and by comparing it to the standard S/1 laser damage test method. The DSA method can be more efficient and accelerate materials development and validation necessary to support the design of high-power repetition-rated lasers and optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app