Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides via Mechanical Instabilities.

ACS Nano 2017 September 27
Thermoplastic polymers subjected to a continuous tensile stress experience a state of mechanical instabilities, resulting in neck formation and propagation. The necking process with strong localized strain enables the transformation of initially brittle polymeric materials into robust, flexible, and oriented forms. Here we harness the polymer-based mechanical instabilities to control the fragmentation of atomically thin transition metal dichalcogenides (TMDs). We develop a simple and versatile nanofabrication tool to precisely fragment atom-thin TMDs sandwiched between thermoplastic polymers into ordered and atomically perfect TMD nanoribbons in arbitrary directions regardless of the crystal structures, defect content, and original geometries. This method works for a very broad spectrum of semiconducting TMDs with thicknesses ranging from monolayers to bulk crystals. We also explore the electrical properties of the fabricated monolayer nanoribbon arrays, obtaining an on/off ratio of ∼106 for such MoS2 arrays based field-effect transistors. Furthermore, we demonstrate an improved hydrogen evolution reaction with the resulting monolayer MoS2 nanoribbons, thanks to the largely increased catalytic edge sites formed by this physical fragmentation method. This capability not only enriches the fundamental study of TMD extreme and fragmentation mechanics, but also impacts on future developments of TMD-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app