Add like
Add dislike
Add to saved papers

Influence of ignited sediments on external phosphorus adsorption and sedimentary phosphorus forms.

Phosphorus (P) adsorpted by sediments, when covered by and mixed with ignited sediments from Meiliang Bay in Tai Lake, was analyzed in the laboratory. Potassium dihydrogen phosphate (KH2 PO4 ) was added to the parallel experimental units to simulate periodic external P input. Based on the Langmuir model, the sediments after ignition had a greater Smax (maximum P adsorption), a lower equilibrium phosphorus concentration at zero adsorption (EPC0 ), and a lower degree of phosphorus saturation in comparison with sediments without ignition. This was confirmed by the variation in the dissolved inorganic phosphorus in the overlying water. When sediments were mixed with or covered by the ignited sediments, 5.985 and 5.978 mg of input P disappeared from the overlying water, respectively. However, when the sediments were mixed with the ignited sediments, 84.18% of the input P was converted to HCl-P, whereas when they were covered by the ignited sediments, sedimentary P was released, mainly from Fe/Al-P (up to 87.50%). This was attributed to differences in the microenvironments where less-intense anaerobic conditions were formed in the mixed sediments than in the sediments covered by the ignited sediments. This suggests that the injection of ignited sediments into existing sediments enhances their P adsorption and retention. It is favor of the control of the eutrophication with a simple technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app