Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Interfacial properties of avian stratum corneum monolayers investigated by Brewster angle microscopy and vibrational sum frequency generation.

The outermost layer of skin, the stratum corneum (SC), contains a complex mixture of lipids, which controls the rate of cutaneous water loss (CWL) in reptiles, mammals, and birds. However, the molecular structure of SC lipids and how molecular configurations influence CWL is poorly understood. Here, the organization and structure of SC lipids extracted from birds were investigated by means of Langmuir films. Properties of lipids from the SC of arid and semi-arid adapted larks, known to have a low CWL, were compared with lipids extracted from the SC of mesic lark species with higher CWL to gain insight into how structure impacts CWL. Film properties were probed with surface pressure-area isotherms, Brewster angle microscopy (BAM), and vibrational sum frequency generation (VSFG). Results indicate organization and ordering of SC lipids in the arid-adapted hoopoe lark was vastly different from all other species, forming a miscible, rigid monolayer, whereas monolayers from semi-arid and mesic species were immiscible and disordered. Probing of interfacial water structure reveals that film morphology determines organization of water molecules near the monolayer; monolayers with a porous morphology had an increased population of water molecules that are weakly hydrogen-bonded. In general, CWL appears related to the miscibility and ordering of lipid components within the SC, as well as the ability of these lipids to interact with water molecules. From a broader perspective, CWL in larks appears linked to both the SC lipid composition and the aridity of the species' environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app