Add like
Add dislike
Add to saved papers

Cobalt Nanoparticles Encapsulated in Porous Carbons Derived from Core-Shell ZIF67@ZIF8 as Efficient Electrocatalysts for Oxygen Evolution Reaction.

The synthesis of electrocatalysts consisting of selectively functionalized parts is an effective strategy to prepare nonprecious electrocatalysts with excellent performance for oxygen evolution reaction (OER). Herein, we synthesized core-shell structured ZIF67@ZIF8 and converted it into Co decorated porous carbons (CS-Co/Cs) consisting of the ZIF67 derived uniformly dispersed Co nanoparticles encapsulated in graphitic carbon as cores and the ZIF8 derived porous carbon as shells. Compared to individual ZIF67 derived samples (Co/Cs), the unique structure of CS-Co/Cs leads to the larger surface area and more hydrophilic surface, both of which facilitate the mass transfer, contributing to the enhanced OER performance. The optimized CS-Co/C sample presents the low overpotential of 290 mV to deliver 10 mA cm-2 toward OER in 1 M KOH, which is among the best of the reported nonprecious OER electrocatalysts. The CS-Co/C exhibits no obvious current attenuation at 1.53 V for 30 000 s, demonstrating its robust stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app