Add like
Add dislike
Add to saved papers

In-silico investigations of the functional impact of KCNA5 mutations on atrial mechanical dynamics.

A recent study has identified six novel genetic variations (D322H, E48G, A305T, D469E, Y155C, P488S) in KCNA5 (encoding Kv1.5 which carries the atrial-specific ultra-rapid delayed rectifier current, IKur ) in patients with early onset of lone atrial fibrillation. These mutations are distinctive, resulting in either gain-of-function (D322H, E48G, A305T) or loss-of-function (D469E, Y155C, P488S) of IKur channels. Though affecting potassium channels, they may modulate the cellular active force and therefore atrial mechanical functions, which remains to be elucidated. The present study aimed to assess the inotropic effects of the identified six KCNA5 mutations on the human atria. Multiscale electromechanical models of the human atria were used to investigate the impact of the six KCNA5 mutations on atrial contractile functions. It was shown that the gain-of-function mutations reduced active contractile force primarily through decreasing the calcium transient (CaT) via a reduction in the L-type calcium current (ICaL ) as a secondary effect of modulated action potential, whereas the loss-of-function mutations mediated positive inotropic effects by increased CaT via enhancing the reverse mode of the Na+ /Ca2+ exchanger. The 3D atrial electromechanical coupled model predicted different functional impacts of the KCN5A mutation variants on atrial mechanical contraction by either reducing or increasing atrial output, which is associated with the gain-of-function mutations or loss-of-function mutations in KCNA5, respectively. This study adds insights to the functional impact of KCNA5 mutations in modulating atrial contractile functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app