Add like
Add dislike
Add to saved papers

miR-342-3p elevates osteogenic differentiation of umbilical cord mesenchymal stem cells via inhibiting Sufu in vitro.

Human umbilical mesenchymal stem cells (UCMSCs) have been wildly used in tissue engineering field as a promising source because of their unlimited and noninvasive origin. To selectively induce osteogenic differentiation of UCMSCs, it's imperative to understand the regulatory molecular mechanism underlying the process of how these cells switch into osteogenic lineage path. We previously showed enhanced sonic hedgehog (Shh) signaling pathway upon osteogenic induction in mesenchymal stem cells. In this study, miRNA-seq analysis revealed substantial Shh-dependent expression of distinct miRNAs, including miR-342-3p, during ostogenesis. RT-qPCR confirmed that miR-342-3p was increased at a greater level when Shh signaling pathway was activated by N-terminal of Shh ligand compared with osteogenic induction alone, in contrast to the decreasing of suppressor-of-fused protein (Sufu). Consistently, transient overexpressing miR342-3p in UCMSCs via miR-342-3p mimics dramatically decreased Sufu, a suppressor of Gli, while osteogenic markers, including alkaline phosphate and osteocalcin, were upregulated during osteogenic induction, indicating that miR-342-3p might be involved in osteogenesis through the Shh signaling pathway. In conclusion, this study showed the potential of miR-342-3p as a therapeutic target to promote bone regeneration by modulating expression of Sufu in UCMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app