Add like
Add dislike
Add to saved papers

Relative Computed Tomography (CT) Enhancement Value for the Assessment of Microvascular Architecture in Renal Cell Carcinoma.

BACKGROUND To investigate the correlation between the relative computed tomography (CT) enhancement value and the microvascular architecture in different pathologic subtypes of renal cell carcinoma (RCC). MATERIAL AND METHODS This retrospective study included 55 patients with pathologically confirmed RCC. Immunohistochemistry for CD34 was performed for all surgical specimens. Microvascular architecture parameters (density, area, diameter, and perimeter) for the microvessels and the microvessels with lumen were determined. The CT scan was performed during arterial phase or venous phase. The correlation of parameters on CT and tumor angiogenesis was investigated. RESULTS Density of microvessels showed a positive correlation with CT values of tumors, ratios of tumor to cortex, and differences of tumor and medulla, but no correlation with CT value ratio of tumor to aorta or tumor to medulla. CT parameters were positively correlated with microvascular parameters. However, no CT parameter differences between hypo-vascular clear cell RCC and papillary RCC was observed. Strikingly, the density and area of the microvessels were significantly higher in hypo-vascular clear cell RCC than that in papillary RCC, while the density of the microvessels with lumen in the cyst-present RCC was significantly higher than that in the cyst-absent RCC. The values (especially those of microvessels with lumen) of area density, diameter, and perimeter were higher in the capsule-absent RCC than in the capsule-present RCC. CONCLUSIONS The relative CT enhancement value of RCC was associated with vascular architecture parameters including density, area, and perimeter. Quantitative and semi-quantitative parameters on enhanced CT may shed some light on tumor vasculature and function as indicators of the biological behavior of RCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app