Add like
Add dislike
Add to saved papers

Influence of direct or indirect contact for the cytotoxicity and blood compatibility of spider silk.

Spider silk became one of the most-researched biomaterials in the last years due to its unique mechanical strength and most favourable chemical composition for tissue engineering purposes. However, standardized analysis of cytocompatibility is missing. Therefore, the aim of this study was to investigate hemolysis, cytotoxicity of native spider silk as well as influences on the cell culture medium. Changes of cell culture medium composition, osmolarity as well as glucose and lactate content were determined via ELISA measurement. Possible hemolysis and cytotoxicity in vitro of spider silk were performed via measurement of hemoglobin release of human red blood cells or relative metabolic activity of L929 fibroblasts, respectively, according to international standard procedures. In ELISA measurement, no significant changes in medium composition could be found in this study. Spider silk was not hemolytic in direct and indirect testing. However, a borderline cytotoxicity according to definitions was found in indirect cytotoxicity testing. Nevertheless, in direct cytotoxicity testing, relative metabolic activity measurement revealed that spider silk is not cytotoxic under these conditions. This is the first study to conduct standardized tests regarding cytotoxicity and hemolysis of native spider silk, which might be considered inert in cell culture. As neither hemolysis nor cytotoxicity was found in direct contact in standardized procedures, safety in biomedical applications may be assumed. The indirect cytotoxicity seems to play a minor role in vivo. However, a borderline toxicity was revealed, suggesting potential leachables not yet identified. Displays one of the weaving frames used in this study after seeding with the single drop technique described herein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app