Add like
Add dislike
Add to saved papers

Ecto-5'-nucleotidase (CD73) regulates bone formation and remodeling during intramembranous bone repair in aging mice.

Tissue & Cell 2017 October
Ecto-5'-nucleotidase (CD73) generates adenosine, an osteoblast activator and key regulator of skeletal growth. It is unknown, however, if CD73 regulates osteogenic differentiation during fracture healing in adulthood, and in particular how CD73 activity regulates intramembranous bone repair in the elderly. Monocortical tibial defects were created in 46-52-week-old wild type (WT) and CD73 knock-out mice (CD73-/- ) mice. Injury repair was analyzed at post-operative days 5, 7, 14 and 21 by micro-computed tomography (micro-CT), histomorphometry, proliferating cell nuclear antigen (PCNA) immunostaining, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) histochemistry. Middle-aged CD73 knock-out mice exhibited delayed bone regeneration and significantly reduced bone matrix deposition detected by histomorphometry and micro-CT. Cell proliferation, ALP activity and osteoclast number were reduced in the CD73-/- mice, suggesting a combined defect in bone formation and resorption due the absence of CD73 activity in this model of intramembranous bone repair. Results from this study demonstrate that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app