Add like
Add dislike
Add to saved papers

Dexamethasone-induced hepatomegaly and steatosis in larval zebrafish.

Fish hepatobiliary syndrome, characterized by hepatomegaly and fatty liver, has been frequently reported in many cultured fish species and has caused a dramatic economic loss in China. Glucocorticoids are thought to be important non-nutritional factors for hepatomegaly and fatty liver development. In the present study, a dexamethasone-induced zebrafish model of fatty liver and hepatomegaly was established, and the role of glucocorticoid receptor (GR) in the development of hepatomegaly and fatty liver was investigated using developing zebrafish. Exposure of larval zebrafish at 5 days post fertilization (dpf) to dexamethasone for 24 hr caused significant increases of liver size and number of fish with hepatic steatosis at 6 dpf. The increase of liver size caused by dexamethasone was significantly reversed by treatment with RU486, a GR antagonist, and by gene knock-down with a morpholino against the GR. The dexamethasone-induced hepatic steatosis was also inhibited by treatment with RU486. Overall, the results highlight larval zebrafish as a useful model for stress-induced liver failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app