Add like
Add dislike
Add to saved papers

Neonatal basal ganglia and thalamic volumes: very preterm birth and 7-year neurodevelopmental outcomes.

Pediatric Research 2017 December
BackgroundThis study aims to (i) compare volumes of individual basal ganglia nuclei (caudate nucleus, pallidum, and putamen) and the thalamus between very preterm (VP) and term-born infants at term-equivalent age; (ii) explore neonatal basal ganglia and thalamic volume relationships with 7-year neurodevelopmental outcomes, and whether these relationships differed between VP and term-born children.Methods210 VP (<30 weeks' gestational age) and 39 term-born (≥37 weeks' gestational age) infants underwent brain magnetic resonance imaging at term-equivalent age, and deep gray matter volumes of interest were automatically generated. 186 VP and 37 term-born children were assessed for a range of neurodevelopmental measures at age 7 years.ResultsAll deep gray matter structures examined were smaller in VP infants compared with controls at term-equivalent age; ranging from (percentage mean difference (95% confidence intervals) -6.2% (-10.2%, -2.2%) for the putamen, to -9.5% (-13.9%, -5.1%) for the caudate nucleus. Neonatal basal ganglia and thalamic volumes were positively related to motor, intelligence quotient, and academic outcomes at age 7 years, with mostly similar relationships in the VP and control groups.ConclusionVP birth results in smaller basal ganglia and thalamic volumes at term-equivalent age, and these smaller volumes are related to a range of 7-year neurodevelopmental deficits in VP children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app