Add like
Add dislike
Add to saved papers

Decellularization of Whole Human Liver Grafts Using Controlled Perfusion for Transplantable Organ Bioscaffolds.

Stem Cells and Development 2017 September 16
Liver transplantation is the only effective treatment for end-stage liver disease, but absolute donor shortage remains a limiting factor. Recent advances in tissue engineering focus on generation of native extracellular matrix (ECM) by decellularized complete livers in animal models. Although proof of concept has been reported for human livers, this study aims to perform whole liver decellularization in a clinically relevant series using controlled machine perfusion. In this study, we describe a mild nondestructive decellularization protocol, effective in 11 discarded human whole liver grafts to generate constructs that reliably maintain hepatic architecture and ECM components using machine perfusion, while completely removing cellular DNA and RNA. The decellularization process preserved the ultrastructural ECM components confirmed by histology, electron microscopy, and proteomic analysis. Anatomical characteristics of the native microvascular network and biliary drainage of the liver were confirmed by contrast computed tomography scanning. Decellularized vascular matrix remained suitable for normal suturing and no major histocompatibility complex molecules were detected, suggesting absence of allo-reactivity when used for transplantation. After extensive washing, decellularized scaffolds were nontoxic for cells after reseeding human mesenchymal stromal or umbilical vein endothelial endothelium cells. Indeed, evidence of effective recellularization of the vascular lining was obtained. In conclusion, we established an effective method to generate clinically applicable liver scaffolds from human discarded whole liver grafts and show proof of concept that reseeding of normal human cells in the scaffold is feasible. This supports new opportunities for bioengineering of transplantable grafts in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app