Add like
Add dislike
Add to saved papers

Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of Peptide-Bound Advanced Glycation End Products in Gastrointestinal Digests.

This work reports the influence of glyoxal (GO)-derived glycation on the gastrointestinal enzymatic hydrolysis of β-lactoglobulin and β-casein. Reduced digestibility of glycated proteins was found in both gastric and intestinal stage. Distribution of Maillard reaction products in digests with different molecular weight ranges was investigated subsequently. The colorless and brown MRPs largely presented in the digests smaller than 20 kDa. However, the resistance of fluorescent advanced glycation end products (AGEs) to enzymatic hydrolysis gradually increased during glycation, rendering fluorescent AGEs largely present in the digests larger than 20 kDa. No free N (ε)-carboxymethyllysine (CML) was detected in digests. The relative amount of CML in digests larger than 1 kDa was higher than that of Lys, demonstrating the hindrance of CML to enzymatic hydrolysis. This study highlights the resistance of GO-derived AGEs to digestive proteases via blockage of tryptic cleavage sites or steric hindrance, which is a barrier to the absorption of dietary AGEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app