Journal Article
Review
Add like
Add dislike
Add to saved papers

Granulocyte colony-stimulating factor for the treatment of cardiovascular diseases: An update with a critical appraisal.

Heart failure and acute myocardial infarction are conditions that are associated with high morbidity and mortality. Significant dysfunction of the heart muscle can occur as the consequence of end-stage chronic cardiovascular diseases or acute ischemic events that are marked by large infarction area and significant tissue necrosis. Despite the remarkable improvement of conventional treatments, a substantial proportion of patients still develops severe heart failure that can only be resolved by heart transplantation or mechanical device implantation. Therefore, novel approaches based on stem-cell therapy can directly modify the disease process and alter its prognosis. The ability of the stem-cells to modify and repair the injured myocardium is a challenging but intriguing concept that can potentially replace expensive and invasive methods of treatment that are associated with increased risks and significant financial costs. In that sense, granulocyte colony-stimulating factor (G-CSF) seems as an attractive treatment approach. Based on the series of pre-clinical experiments and a limited amount of clinical data, it was demonstrated that G-CSF agents possess the ability to mobilize stem-cells from bone marrow and induce their differentiation into cardiomyocytes or endothelial cells when brought into contact with injured regions of the myocardium. However, clinical benefits of G-CSF use in damaged myocardium remain unclear and are the topic of expert discussion. The main goal of this review is to present relevant and up-to-date evidence on G-CSF therapy use in pre-clinical models and in humans and to provide a rationale for its potential clinical applications in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app