Add like
Add dislike
Add to saved papers

Benefits and challenges of molecular diagnostics for childhood tuberculosis.

Expanding tuberculosis (TB)-diagnostic services, including access to rapid tests, is a World Health Organization (WHO) strategy to accelerate progress toward ending TB. Faster and more sensitive molecular tests capable of diagnosing TB and drug-resistant TB have the technical capacity to address limitations associated with smears and cultures by increasing accuracy and shortening turnaround times as compared with those of these conventional laboratory methods. Nucleic acid amplification assays used to detect and analyze Mycobacterium tuberculosis (MTB)-complex nucleic acids can be used directly on specimens from patients suspected of having TB. Recently, several commercial molecular tests were developed to detect MTB and determine the drug resistance (DR) based on detection of specific genetic mutations conferring resistance. The first to be endorsed by the WHO was molecular line-probe assay technology. This test uses polymerase chain reaction (PCR) and reverse-hybridization methods to rapidly identify MTB and DR-related mutations simultaneously. More recently, the WHO endorsed Xpert MTB/RIF, Cepheid Inc, CA, USA, a fully automated assay used for TB diagnosis that relies upon PCR techniques for detection of TB and rifampicin resistance-related mutations. Other promising molecular TB assays for simplifying PCR-based testing protocols and increasing their accuracy are under development and evaluation. Although we lack a practical gold standard for the diagnosis of childhood TB, its bacteriological confirmation is always recommended to be sought whenever possible prior to a diagnostic decision being made. Conventional diagnostic laboratory TB tests are less efficient for children as compared with adults, because sufficient sputum samples are more difficult to collect from infants and young children, and their disease is often paucibacillary, resulting in smear-negative disease. These inherent challenges associated with childhood TB are due to immunological- and pathophysiological-response differences relative to those observed in adults. Several recent meta-analyses showed low sensitivity estimates of PCR-based TB assays for paucibacillary forms of TB (extrapulmonary TB and smear-negative pulmonary disease), which represent the vast majority of childhood TB cases. Despite the lack of evidence regarding use of the rapid molecular assays to identify TB and detect DR in children, and due to the clinical nature of childhood TB, TB-expert groups recommend including rapid methods for TB identification and DR detection in diagnostic algorithms for children suspected of both smear-positive and -negative pulmonary or extrapulmonary TB, both with or without human immunodeficiency virus (HIV)-coinfection, when combined with standard methods (including clinical, microbiological, and radiological assessment) for diagnosing active TB and conventional DR. Since 2011, the WHO has specifically recommended use of the Xpert MTB/RIF test as an initial diagnostic tool for children with suspected HIV-associated TB or multidrug-resistant TB based on successful treatment data related to adults. Implementation of the rapid molecular assays for rapid detection of TB and DR should occur in laboratories with proven capability to run molecular tests and where quality control systems are implemented. Molecular approaches should be more largely tested in children, given their status as the group in whom the diagnostic dilemma is most pronounced. These tests should also be included in specific childhood TB diagnostic algorithms adapted to the local/national context in combination with other strategies for improving diagnostics, including more effective specimen collection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app