Add like
Add dislike
Add to saved papers

Endogenously generated amyloid-β increases stiffness in human neuroblastoma cells.

Amyloid-β (Aβ) is widely recognized as toxic to neuronal cells. Its deposition on plasma and intracellular membranes and aggregation into amyloid plaques can disturb the composition and physiological function of neurons. Whether a physical property of cells, such as stiffness, is altered by endogenously overexpressed Aβ has not yet been investigated. In this study, we used human neuroblastoma cells stably overexpressing amyloid precursor protein (APP) and its Swedish mutant form (APPswe) to measure the changes in cell stiffness. Our results showed that the stiffness of cells overexpressing APP or APPswe was higher than that of control SH-SY5Y cells. Either reducing levels of Aβ with the γ secretase inhibitor DAPT or blocking the membrane calcium channel formed by Aβ with tromethamine decreased cell stiffness to a level close to the control SH-SY5Y cells. Our results suggested that Aβ, not APP, contributed to increased cell stiffness and that closure of calcium channels formed by Aβ can alleviate the effects of Aβ on membrane stiffness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app