Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cyclic-di-GMP binding induces structural rearrangements in the PlzA and PlzC proteins of the Lyme disease and relapsing fever spirochetes: a possible switch mechanism for c-di-GMP-mediated effector functions.

Pathogens and Disease 2016 November
The c-di-GMP network of Borrelia burgdorferi, a causative agent of Lyme disease, consists of Rrp1, a diguanylate cyclase/response regulator; Hpk1, a histidine kinase; PdeA and PdeB, c-di-GMP phosphodiesterases; and PlzA, a PilZ domain c-di-GMP receptor. Borrelia hermsii, a causative agent of tick-borne relapsing fever, possesses a putative c-di-GMP regulatory network that is uncharacterized. While B. burgdorferi requires c-di-GMP to survive within ticks, the associated effector mechanisms are poorly defined. Using site-directed mutagenesis, size exclusion chromatography, isothermal titration calorimetry and fluorescence resonance energy transfer, we investigate the interaction of c-di-GMP with the Borrelia PilZ domain-containing Plz proteins: B. burgdorferi PlzA and B. hermsii PlzC. The Plz proteins were determined to be monomeric in their apo and holo forms and to bind c-di-GMP with high affinity with a 1:1 stoichiometry. C-di-GMP binding induced structural rearrangements in PlzA and PlzC. C-di-GMP binding proved to be dependent on positive charge at R145 of the PilZ domain motif, R145 xxxR. Comparative sequence analyses led to the identification of Borrelia consensus sequences for the PilZ domain signature motifs. This study provides insight into c-di-GMP:Plz receptor interaction and identifies a possible switch mechanism that may regulate Plz protein effector functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app