Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of a source-exposure matrix for occupational exposure assessment of electromagnetic fields in the INTEROCC study.

To estimate occupational exposures to electromagnetic fields (EMF) for the INTEROCC study, a database of source-based measurements extracted from published and unpublished literature resources had been previously constructed. The aim of the current work was to summarize these measurements into a source-exposure matrix (SEM), accounting for their quality and relevance. A novel methodology for combining available measurements was developed, based on order statistics and log-normal distribution characteristics. Arithmetic and geometric means, and estimates of variability and maximum exposure were calculated by EMF source, frequency band and dosimetry type. The mean estimates were weighted by our confidence in the pooled measurements. The SEM contains confidence-weighted mean and maximum estimates for 312 EMF exposure sources (from 0 Hz to 300 GHz). Operator position geometric mean electric field levels for radiofrequency (RF) sources ranged between 0.8 V/m (plasma etcher) and 320 V/m (RF sealer), while magnetic fields ranged from 0.02 A/m (speed radar) to 0.6 A/m (microwave heating). For extremely low frequency sources, electric fields ranged between 0.2 V/m (electric forklift) and 11,700 V/m (high-voltage transmission line-hotsticks), whereas magnetic fields ranged between 0.14 μT (visual display terminals) and 17 μT (tungsten inert gas welding). The methodology developed allowed the construction of the first EMF-SEM and may be used to summarize similar exposure data for other physical or chemical agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app