Add like
Add dislike
Add to saved papers

Neonatal inhibition of Na + -K + -2Cl - -cotransporter prevents ketamine induced spatial learning and memory impairments.

Prolonged ketamine exposure in neonates at anesthetic doses is known to cause long-term impairments of learning and memory. A current theoretical mechanism explains this phenomenon as being neuro-excitotoxicity mediated by compensatory upregulation of N-methyl-d-aspartate receptors (NMDARs), which then initiates widespread neuroapoptosis. Additionally, the excitatory behavior of GABAergic synaptic transmission mediated by GABAA receptors (GABAA Rs), occurring during the early neuronal development period, is proposed as contributing to the susceptibility of neonatal neurons to ketamine-induced injury. This is due to differential developmental expression patterns of Na+ -K+ -2Cl- co-transporter (NKCC1) and K+ -Cl- co-transporter. Studies have shown that bumetanide, an NKCC1 inhibitor, allows neurons to become inhibitory rather than excitatory early in development. We thus hypothesized that bumetanide co-administration during ketamine treatment would reduce over excitation and protect the neurons from excitotoxicity. In this initial study, the Morris Water Maze test was used to assess the effects of co-administration of ketamine and bumetanide to neonatal Sprague-Dawley rats on long-term learning and memory changes seen later in life. It was revealed that bumetanide, when co-treated with ketamine neonatally, significantly impeded behavioral deficits typically seen in animals exposed to ketamine alone. Therefore, these findings suggest a new mechanism by which neonatal ketamine induced learning impairments can be prevented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app