Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exploring the unexpected influence of the Si:Ge ratio on the molecular architecture and mechanical properties of Al-free GICs.

Germanium (Ge)-based glass ionomer cements have demonstrated the ability to balance strength with extended setting times, a unique set of characteristics for aluminum-free glass ionomer cements. However, the mechanical properties of current Ge-based glass ionomer cements significantly deteriorate over time, which jeopardizes their clinical potential. This work explores the effect of incrementally decreasing the Si:Ge ratio in the glass phase of zinc-silicate glass ionomer cements to identify potential mechanisms responsible for the time-induced mechanical instability of Ge-based glass ionomer cements. The influence of Ge was evaluated on the basis of changes in mechanical properties and molecular architecture of the cements over a 180-day period. It was observed that the compressive strength and modulus of the cements were sustained when Si:Ge ratios were ≥1:1, but when Si:Ge ratios are <1:1 these properties decreased significantly over time. These mechanical changes were independent of structural changes in the glass ionomer cement matrices, as the level of metal-carboxylate crosslinks remained constant over time across the various Si:Ge ratios explored. However, it was noted the temporal decline of mechanical properties was proportional to the increased release of degradation byproducts, in particular Ge that was released from the cements in substantially greater quantities than other glass constituents. Unexpectedly, the slowest setting cement (Si:Ge 1:1) was also the strongest; behavior that is uncommon in Si-based glass ionomer cements, supports the potential of Ge-containing glass ionomer cements as injectable bone cements in applications such as percutaneous vertebroplasty.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app