Read by QxMD icon Read

Journal of Biomaterials Applications

Andrea Fotticchia, David Musson, Cristina Lenardi, Emrah Demirci, Yang Liu
Tendon tears are a relevant concern for today's national health systems because of their social impact and high recurrence rate. The current gold standard for fixing tendon tears is surgical repair; however, this strategy is not able to fully re-establish tendon integrity and functionality. Tissue engineering approaches aim at promoting tissue regeneration by delivering the opportune signals to the injured site combining biomaterials, cells and biochemical cues. Electrospinning is currently one of the most versatile polymer processing techniques that allows manufacturing of nano- and micro-fibres substrates...
July 2018: Journal of Biomaterials Applications
Katharina Düregger, Sina Trik, Stefan Leonhardt, Markus Eblenkamp
Microscale porous membranes are used in a wide range of technical and medical applications such as water treatment, dialysis and in vitro test systems. A promising approach to control membrane properties and overcome limitations of conventional fabrication techniques is given by additive manufacturing (AM). In this study, we designed and printed a microporous membrane via digital light processing and validated its use for biomedical in vitro applications based on the example of a cell culture insert. A multi-layer technique was developed, resulting in an eight-layer membrane with an average pore diameter of 25 µm...
July 2018: Journal of Biomaterials Applications
Tomasz Z Osmałek, Anna Froelich, Marcin Soból, Bartłomiej Milanowski, Marcin Skotnicki, Paweł Kunstman, Mirosław Szybowicz
Aims After oral administration, naproxen generates several side-effects related to stomach malfunction. Undoubtedly, the enteric dosage forms with naproxen can be considered as safer. Moreover, since it has been evidenced that development and growth of colorectal cancer is related to the presence of cyclooxygenase, naproxen is investigated in terms of the tumor prevention. The aim of the present work was to formulate and evaluate the properties of novel naproxen-loaded macrobeads, made on the basis of low-acyl gellan gum and its blends with carrageenans, guar gum, cellulose sulfate, and dextran sulfates...
July 2018: Journal of Biomaterials Applications
Hongzhang Guo, Changde Wang, Jixiang Wang, Yufang He
This study aimed to explore the surface modification of deproteinized bovine bone using lithium-ion and evaluate its efficacy on osteogenesis improvement and critical-sized bone defect repair. Hydrothermal treatment was performed to produce lithium-incorporated deproteinized bovine bone. In vitro study, human osteosarcoma cell MG63 (MG63) was cultured with the bone substitute to evaluate the cell viability and then calcium deposition was measured to analyze the osteogenesis. In vivo studies, male adult goats were chosen to build critical-sized bone defect model and randomly divided into three groups...
May 2018: Journal of Biomaterials Applications
Mirana Taz, Sang Ho Bae, Hae Il Jung, Hyun-Deuk Cho, Byong-Taek Lee
A variety of synthetic materials are currently in use as bone substitutes, among them a new calcium phosphate-based multichannel, cylindrical, granular bone substitute that is showing satisfactory biocompatibility and osteoconductivity in clinical applications. These cylindrical granules differ in their mechanical and morphological characteristics such as size, diameter, surface area, pore size, and porosity. The aim of this study is to investigate whether the sizes of these synthetic granules and the resultant inter-granular spaces formed by their filling critical-sized bone defects affect new bone formation characteristics and to determine the best formulations from these individual types by combining the granules in different proportions to optimize the bone tissue regeneration...
May 2018: Journal of Biomaterials Applications
Philip Chennell, Emmanuelle Feschet-Chassot, Valérie Sautou, Bénédicte Mailhot-Jensen
Thermoplastic polyurethanes are widely used in medical devices. In order to limit some of their shortfalls, like microbial attachment, surfaces modifications can be required. In this work, a two-step replication method was used to create ordered macroporous and mesoporous thermoplastic polyurethane surfaces using anodic aluminum oxide as master template. The intermediate mould materials that were tested were polystyrene and a polyacrylate resin with inorganic filler. All obtained surfaces were characterized by scanning electron microscopy...
May 2018: Journal of Biomaterials Applications
Miroslav Jelínek, Elena Buixaderas, Jan Drahokoupil, Tomáš Kocourek, Jan Remsa, Přemysl Vaněk, Marta Vandrovcová, Martina Doubková, Lucie Bačáková
The goal of our study is to design BaTiO3 ferroelectric layers that will cover metal implants and provide improved osseointegration. We synthesized ferroelectric BaTiO3 layers on Pt/fused silica substrates, and we studied their physical and bio-properties. BaTiO3 and Pt layers were prepared using KrF excimer laser ablation at substrate temperature Ts in the range from 200°C to 750°C in vacuum or under oxygen pressure of 10 Pa, 15 Pa, and 20 Pa. The BaTiO3 /Pt and Pt layers adhered well to the substrates. BaTiO3 films of crystallite size 60-140 nm were fabricated...
May 2018: Journal of Biomaterials Applications
Swati Sharma, Nitu Bhaskar, Surjasarathi Bose, Bikaramjit Basu
A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology...
May 2018: Journal of Biomaterials Applications
Engie Safwat, Mohammad L Hassan, Sayed Saniour, Dalia Yehia Zaki, Mervat Eldeftar, Dalia Saba, Mohamed Zazou
Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination...
May 2018: Journal of Biomaterials Applications
Xiaolong Liu, Yiran Xia, Lulu Liu, Dongmei Zhang, Zhaosheng Hou
The purpose of this study is to offer a novel kind of polyurethane with improved surface blood compatibility for long-term implant biomaterials. In this work, the aliphatic poly(ester-urethane) (PEU) with uniform-size hard segments was prepared and the PEU surface was grafted with hydrophilic poly(ethylene glycol) (PEG). The PEU was obtained by chain-extension of poly(ɛ-caprolactone) (PCL) with isocyanate-terminated urethane triblock. Free amino groups were introduced onto the surface of PEU film via aminolysis with hexamethylenediamine, and then the NH2 -grafted PEU surfaces (PEU-NH2 ) were reacted with isocyanate-terminated monomethoxyl PEG (MPEG-NCO) to obtain the PEG-grafted PEU surfaces (PEU-PEG)...
May 2018: Journal of Biomaterials Applications
Kentaro Imamura, Keita Tachi, Tadahiro Takayama, Ryutaro Shohara, Hironori Kasai, Jisen Dai, Seiichi Yamano
We have developed a unique delivery system of growth factors using collagen membranes (CMs) to induce bone regeneration. We hypothesized that fibroblast growth factor18 (FGF-18), a pleiotropic protein that stimulates proliferation in several tissues, can be a good candidate to use our delivery system for bone regeneration. Cell viability, cell proliferation, alkaline phosphatase activity, mineralization, and marker gene expression of osteoblastic differentiation were evaluated after mouse preosteoblasts were cultured with a CM containing FGF-18, a CM containing platelet-derived growth factor, or a CM alone...
May 2018: Journal of Biomaterials Applications
Ali Deniz Dalgic, Ammar Z Alshemary, Ayşen Tezcaner, Dilek Keskin, Zafer Evis
In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide...
May 2018: Journal of Biomaterials Applications
Da Yong Shin, Min-Ho Kang, In-Gu Kang, Hyoun-Ee Kim, Seol-Ha Jeong
A biodegradable polylactic acid composite containing tricalcium phosphate microsphere was fabricated. The composite exhibited enhanced biocompatibility and a well-interconnected porous structure that enabled tissue ingrowth after degradation. The tricalcium phosphate microspheres had an average size of 106 ± 43 μm and were incorporated into the polylactic acid matrix using a high-shear mixer. The resulting bioactivity and hydrophilicity were enhanced to levels comparable to those of a polylactic acid composite containing tricalcium phosphate powder, which is a well-known material used in the medical field...
May 2018: Journal of Biomaterials Applications
Tomasz Zbigniew Osmałek, Anna Froelich, Barbara Jadach, Marek Krakowski
Purpose Most of the studies concerning gellan have been focused on its application as a food ingredient, however, gellan is often considered as a candidate for the development of novel pharmaceutical formulations. Taking into account that gellan is ion-sensitive, it can be assumed that its initial mechanical properties can change upon contact with body secretions. Therefore, the aim of the work was to investigate the rheological properties of pure high-acyl gellan gum hydrogel (0.4%) and its mixtures with selected simulated body fluids...
May 2018: Journal of Biomaterials Applications
Gabriele Böhm, Jürgen Groll, Karl-Heinz Heffels, Nicole Heussen, Peter Ink, Hamid Patrick Alizai, Ulf Peter Neumann, Reinhild Schnabel, Ursula Mirastschijski
Polypropylene meshes are standard for hernia repair. Matrix metalloproteinases play a central role in inflammation. To reduce the inflammatory response and improve remodelling with an associated reduction of hernia recurrence, we modified polypropylene meshes by nanofibre coating and saturation with the broad-spectrum matrix metalloproteinase inhibitor GM6001. The aim was to modulate the inflammatory reaction, increase collagen deposition and improve mesh biointegration. Polypropylene meshes were surface-modified with star-configured NCO-sP(EO -stat-PO) and covered with electrospun nanofibres (polypropylene-nano) and GM6001 (polypropylene-nano-GM)...
May 2018: Journal of Biomaterials Applications
Anna Cb Oliveira, Thayz Fl Morais, Claudia Bernal, Virginia Ca Martins, Ana Mg Plepis, Priscila Fc Menezes, Janice R Perussi
Development of biomaterials' substitutes and/or equivalents to mimic normal tissue is a current challenge in tissue engineering. Thus, three-dimensional cell culture using type I collagen as a polymeric matrix cell support designed to promote cell proliferation and differentiation was employed to create a dermal equivalent in vitro, as well to evaluate the photobiomodulation using red light. Polymeric matrix cell support was prepared from porcine serous collagen (1.1%) hydrolyzed for 96 h. The biomaterial exhibited porosity of 95%, a median pore of 44 µm and channels with an average distance between the walls of 78 ± 14 µm...
April 2018: Journal of Biomaterials Applications
Da-Wei Li, Jin He, Feng-Li He, Ya-Li Liu, Yang-Yang Liu, Ya-Jing Ye, Xudong Deng, Da-Chuan Yin
As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported...
April 2018: Journal of Biomaterials Applications
Jasmina Stojkovska, Zeljka Djurdjevic, Ivan Jancic, Biljana Bufan, Marina Milenkovic, Radmila Jankovic, Vesna Miskovic-Stankovic, Bojana Obradovic
In the present study, possibilities for using novel nanocomposites based on alginate and silver nanoparticles for wound treatment were investigated in a second-degree thermal burn model in Wistar rats. Silver nanoparticles (AgNPs) were electrochemically synthesized in alginate solutions that were further utilized to obtain the Ag/alginate solution and microfibers for subsequent in vivo studies. Daily applications of the Ag/alginate colloid solution, containing AgNPs, alginate and ascorbic acid (G3), wet Ag/alginate microfibers containing AgNPs (G5) and dry Ag/alginate microfibers containing AgNPs (G6) were compared to treatments with a commercial cream containing silver sulfadiazine (G2) and a commercial Ca-alginate wound dressing containing silver ions (G4), as well as to the untreated controls (G1)...
April 2018: Journal of Biomaterials Applications
Cristian Covarrubias, Monserrat Cádiz, Miguel Maureira, Isabel Celhay, Felipe Cuadra, Alfredo von Marttens
Bone repair bionanocomposite scaffolds were produced by incorporating dense bioactive glass nanoparticles or mesoporous bioactive glass nanospheres into a chitosan-gelatin polymer blend. The in vitro bioactivity of the scaffolds was assessed in simulated body fluid, and cell viability and osteogenic differentiation assays were performed with dental pulp stem cells. Bone regeneration properties of the scaffold materials were in vivo assessed by using a critical-sized femoral defect model in rat. The scaffold nanocomposites showed excellent cytocompatibility and ability to accelerate the crystallization of bone-like apatite in vitro...
April 2018: Journal of Biomaterials Applications
Takashi Tanaka, Akiko Uemura, Ryo Tanaka, Yugo Tasei, Tetsuo Asakura
Development of a small-diameter artificial vascular graft is urgent because existing materials often occlude within a short time. We have shown that small-diameter vascular graft using Bombyx mori silk fibroin is a potential candidate. Silk fibroin grafts are fabricated by coating silk fibroin on the knit tube prepared from silk fibroin fibers. However, there is a serious problem that the coated silk fibroin portion hardens when alcohol is used for insolubilization of the coated silk fibroin. This hardening prevents the desired biodegradation of the coated silk fibroin...
April 2018: Journal of Biomaterials Applications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"