Add like
Add dislike
Add to saved papers

Construction and characterization of a multilayered gingival keratinocyte culture model: the TURK-U model.

Cytotechnology 2016 December
In construction of epithelial cells as multilayers, the cells are grown submerged to confluence on fibroblast-embedded collagen gels and, then, lifted to air to promote their stratification. We recently demonstrated that gingival epithelial cells form uniform monolayers on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium, which allows the cells to grow at an air-liquid-solid interface from the beginning of the culturing protocol. In this study, the aim was to further develop our previous model to form a multilayered gingival epithelial culture model. Two different epithelial cell lines (HaCaT from skin and HMK from gingiva) were used in all experiments. Both cell lines were grown first as monolayers for 3 days. After that, keratinocytes were trypsinized, counted and seeded on a sterile semi-permeable nitrocellulose membrane placed on the top of a semi-solid growth medium, forming an air-liquid-solid interface for the cells to grow. At days 1, 4, and 7, epithelial cells were fixed, embedded in paraffin, and sectioned for routine Hematoxylin-Eosin staining and immunohistochemistry for cytokeratin (Ck). At day 1, HMK cells grew as monolayers, while HaCaT cells stratified forming an epithelium with two to three layers. At day 4, a stratified epithelium in the HMK model had four to five layers and its proliferation continued up to day 7. HaCaT cells formed a dense and weakly proliferating epithelium with three to four layers of stratification at day 4 but the proliferation disappeared at day 7. At all days, both models were strongly positive for Ck5, Ck7, and Ck 19, and weakly positive for Ck10. Gingival epithelial cells stratify successfully on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium. This technique allows researchers to construct uniform gingival epithelial cell multilayers at an air-liquid-solid interface, without using collagen gels, resulting in a more reproducible method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app