Add like
Add dislike
Add to saved papers

Cilostazol Prevents Atrial Structural Remodeling through the MEK/ERK Pathway in a Canine Model of Atrial Tachycardia.

OBJECTIVES: Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Atrial structural remodeling (ASR), particularly atrial fibrosis, is an important contributor to the AF substrate. This study aimed to investigate the preventive effects of the phosphodiesterase 3 inhibitor cilostazol on ASR and its potential molecular mechanisms in a canine model of rapid atrial pacing (RAP).

METHODS: Thirty dogs were assigned to sham (Sham), paced/ no treatment (Paced) and paced + cilostazol 5 mg/kg/day (Paced + cilo) groups, with 10 dogs in each group. RAP at 500 beats/min was maintained for 2 weeks, while the Sham group was instrumented without pacing. Cilostazol was provided orally during pacing. Western blotting, RT-PCR and pathology were used to assess ASR.

RESULTS: Cilostazol attenuated atrial interstitial fibrosis and structural remodeling in canines with RAP. MEK/ERK transduction pathway gene expression was upregulated in the Paced group compared with the Sham group. Cilostazol markedly alleviated these changes in the MEK/ERK pathway. Transforming growth factor-β1 protein expression in the Paced group was significantly higher than in the Sham group (p < 0.01), and was significantly reduced by cilostazol (p < 0.01).

CONCLUSIONS: Our findings suggest that cilostazol is beneficial for prevention and treatment in atrial tachycardia-induced ASR in a canine model of RAP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app