Add like
Add dislike
Add to saved papers

Parvalbumin interneurons constrain the size of the lateral amygdala engram.

Memories are thought to be represented by discrete physiological changes in the brain, collectively referred to as an engram, that allow patterns of activity present during learning to be reactivated in the future. During the formation of a conditioned fear memory, a subset of principal (excitatory) neurons in the lateral amygdala (LA) are allocated to a neuronal ensemble that encodes an association between an initially neutral stimulus and a threatening aversive stimulus. Previous experimental and computational work suggests that this subset consists of only a small proportion of all LA neurons, and that this proportion remains constant across different memories. Here we examine the mechanisms that contribute to the stability of the size of the LA component of an engram supporting a fear memory. Visualizing expression of the activity-dependent gene Arc following memory retrieval to identify neurons allocated to an engram, we first show that the overall size of the LA engram remains constant across conditions of different memory strength. That is, the strength of a memory was not correlated with the number of LA neurons allocated to the engram supporting that memory. We then examine potential mechanisms constraining the size of the LA engram by expressing inhibitory DREADDS (designer receptors exclusively activated by designer drugs) in parvalbumin-positive (PV+ ) interneurons of the amygdala. We find that silencing PV+ neurons during conditioning increases the size of the engram, especially in the dorsal subnucleus of the LA. These results confirm predictions from modeling studies regarding the role of inhibition in shaping the size of neuronal memory ensembles and provide additional support for the idea that neurons in the LA are sparsely allocated to the engram based on relative neuronal excitability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app